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ABSTRACT

Practical Cost-Conscious Active Learning for Data Annotation in
Annotator-Initiated Environments

Robbie A. Haertel
Department of Computer Science, BYU

Doctor of Philosophy

Many projects exist whose purpose is to augment raw data with annotations that increase the
usefulness of the data. The number of these projects is rapidly growing and in the age of “big data”
the amount of data to be annotated is likewise growing within each project. One common use of
such data is in supervised machine learning, which requires labeled data to train a predictive model.
Annotation is often a very expensive proposition, particularly for structured data. The purpose of
this dissertation is to explore methods of reducing the cost of creating such data sets, including
annotated text corpora.

We focus on active learning to address the annotation problem. Active learning employs
models trained using machine learning to identify instances in the data that are most informative
and least costly. We introduce novel techniques for adapting vanilla active learning to situations
wherein data instances are of varying benefit and cost, annotators request work “on-demand,” and
there are multiple, fallible annotators of differing levels of accuracy and cost. In order to account
for data instances of varying cost, we build a model of cost from real annotation data based on
a user study. We also introduce a novel cost-conscious active learning algorithm which we call
return-on-investment, that selects instances for annotation that contain the most benefit per unit
cost. To address the issue of annotators that request instances “on-demand,” we develop a parallel,
“no-wait” framework that performs computation while the annotator is annotating. As a result,
annotators need not wait for the computer to determine the best instance for them to annotate—a
common problem with existing approaches. Finally, we introduce a Bayesian model designed
to simultaneously infer ground truth annotations from noisy annotations, infer each individual
annotators accuracy, and predict its own accuracy on unseen data, without the use of a held-out set.
We extend ROI-based active learning and our annotation framework to handle multiple annotators
using this model. As a whole, our work shows that the techniques introduced in this dissertation
reduce the cost of annotation in scenarios that are more true-to-life than previous research.

Keywords: active learning, cost-sensitive learning, machine learning, return-on-investment, Bayesian
models, parallel active learning, natural language processing, part-of-speech tagging
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Chapter 1

Introduction

We live in a truly exciting time in which photos uploaded to the Internet are automatically

tagged with the names of the people in them, cell phones facilitate communication between people

that speak different languages, and cars drive themselves.“Smart apps” are increasingly becoming a

part of everyday life and these apps are driven by machine learning. Frequently, the models that

give modern technology its smarts require large amounts of data that have been directly or indirectly

annotated. Not surprisingly, efforts to manually annotate data can be time-consuming and costly.

The ultimate goal of this dissertation is to produce novel machine learning techniques that will

reduce the cost of producing annotated corpora in practice.

To give an idea of the cost required to annotate corpora in today’s technological landscape,

consider the Comprehensive Corpus of Classical Syriac, being undertaken by the Neal A. Maxwell

Institute for Religious Scholarship—well-known for their publication of the digitized and morpho-

logically annotated edition of the Dead Sea Scrolls—in conjunction with the Oriental Institute at

Oxford. Augmenting the Syriac corpus with detailed morphological annotations requires trained

experts, of which there are relatively few, and manual annotation of all 50 million tokens would

be prohibitively costly. As a point of reference, The Way International Foundation spent 15 years

annotating the New Testament portion of the Peshitta (100,000 words) with morphological annota-

tions, similar to those the Maxwell Institute will employ [48]. Similarly, it has taken 2 years for

two Syriac scholars to label approximately one-fourth of the Old Testament. The Maxwell Institute

plans to use computational assistance in order to increase the amount of data it can annotate within

its budget (or, if possible, reduce the cost of annotating all of the data).

1
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The Syriac project is exemplary of the many projects which have sought or seek to compile

an annotated corpus/dataset as cheaply as possible. Some other examples include: Palmer et al. [64]

and Baldridge and Palmer [7], who are interested in language documentation (collecting, analyzing,

and translating texts from dying languages for the purpose of preserving them); Tomanek et al. [91],

who are interested in named entity recognition; Marcus et al. [56], who were interested in building

a large corpus of syntactically parsed and part-of-speech tagged English texts; and so forth. In

fact, governments and large companies are increasingly adopting machine learning techniques to

accomplish complex tasks including speech recognition, face recognition, object recognition, trip

planning, driver-less cars, etc. Many of the algorithms used in these techniques rely on annotated

(i.e., labeled) data. Therefore, techniques that reduce the cost of obtaining annotated data will have

the economic impact of facilitating a diversity of new projects, improving existing projects, and

allowing for more complex applications.

Specifically, this dissertation focuses on the use of active learning, a technique for incremen-

tally annotating data that intelligently selects the next “best” instance for annotation according to

some specified criterion. We introduce novel techniques for adapting active learning to situations

where:

• data instances to be annotated are of varying benefit and cost

• annotators request work “on-demand” (annotator-initiated) rather than the computer sending

work to the annotators on its time schedule (learner-initiated).

• there are multiple, fallible annotators of differing levels of accuracy and cost

Although these scenarios are common across multiple disciplines (e.g., machine vision, bioinfor-

matics, etc.) and a broad range of tasks, this dissertation focuses on natural language processing.

Specifically, we focus our empirical results on the part-of-speech tagging task (described later),

although our theoretical considerations are more generally applicable. The techniques contained in

this dissertation reduce the total cost of annotating instances under these realistic settings.
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In the next chapter, we provide a gentle introduction to the field of cost-conscious active

learning, including defining pertinent terms. We do so in the context of a survey of existing literature,

with a particular focus on cost-conscious active learning techniques. Since this dissertation is an

ensemble of papers that were either previously published or that will be submitted for publication,

Chapter 3 provides an overview that ties each of the chapters together as a part of the bigger picture.

The subsequent chapters comprise the individual papers, which are followed by conclusions in

Chapter 11.
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Chapter 2

A Survey of Practical, Cost-Conscious Active Learning

A recent survey found that 80% of respondents that were collecting annotated data for

NLP tasks did not use active learning (AL); 60% of them would not consider using AL in future

projects [90]. One of the single biggest reasons (20.5% of participants) for not using AL was that

participants were not convinced that AL would actually reduce the cost of annotation for their

project. We deduce from this survey that a major impediment to the widespread adoption of active

learning for annotating corpora is a disconnect between research and practice. After all, some

theory has shown active learning to be capable of exponentially decreasing the labeling effort [29].

Indeed, active learning research has largely ignored a number of practical issues, not the least of

which is the actual costs of annotation, as previously noted. In this chapter, we outline these aspects

while presenting representative work for each aspect. The current survey is not intended to cover

all aspects of active learning in general; for such a survey the reader is referred to Settles [79] and

Olsson [62], the latter being focused on active learning for natural language processing.

2.1 Supervised Machine Learning

We begin with a brief overview of supervised machine learning, principally to define pertinent terms

as a means of introducing active learning.

Learning is often defined as improvement in performance with experience. In traditional

classroom settings, students are commonly evaluated using standardized tests at the beginning of

the school year and again at the end. After a year’s worth of lessons, homework, exams, etc., most

students’ scores improve between the pre-test and the post-test. Similarly, machine learning is the
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ability of a computer to improve its performance on a task when given data (which can be seen as

“experience”). Not unlike the classroom setting, a “task” consists of mapping an instance from an

input (or problem) space X to an answer from the output (or solution) space Y ; the method of

evaluation of the performance of a computer on a task is usually task-dependent; accuracy, precision,

and recall are common metrics. Besides the Syriac example from the previous chapter, consider the

following additional examples:

Spam Detection. Flag unwanted email messages as spam or not-spam; X is the set of all possible

messages and Y = {spam,not spam}.

Part-of-Speech (POS) Tagging. Not unlike grade-school grammar class, this problem consists of

identifying the part-of-speech (i.e., noun, verb, preposition, etc.) of each word in a corpus.

These annotations can aid the study of corpora, as well as improve performance of other

tasks such as machine translation or parsing. In this task, X could be the set of all English

words and Y is the set of all part-of-speech tags. More commonly, X is the infinite set of all

English sentences and Y would be the infinite set of tag sequences.

Named Entity Recognition. This task consists of finding all the proper nouns in a sentence.

Named entity recognition is used to identify gene names in scientific papers or the names of

persons of interest in surveillance applications. X is the set of all possible sentences and Y

is the set of all possible proper nouns.

Machine Translation. Translating a sentence in the source language to the target language; X is

the infinite set of all possible sentences in the source language and Y is the infinite set of all

possible sentences in the target language.

Parsing. Similar to the dreaded “sentence diagrams” from English class, this task consists of

building a tree-like structure that groups words into phrases and phrases into higher-level

phrases; X is the infinite set of all English sentences and Y is the infinite set of all trees.

Facial Recognition. Match faces to people for authentication or photo tagging; X is the set of all

possible images and Y is the (finite) set of all recognizable people in a database.
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When provided with instances and their solutions (e.g., email messages that have been flagged as

spam or not-spam), computers can learn to map instances from the input space to the output space

(e.g., can mark email messages as spam). This process is called supervised learning, which we

define more formally in section 2.2.

As previously mentioned, a major obstacle to corpus creation is the cost associated with

obtaining annotations from the output space for the corresponding samples from the input space,

which usually requires an expert human annotator. To illustrate, consider the full Penn Treebank

(i.e., not just the Wall Street Journal section). Obtaining the unannotated sentences in today’s

digital world would be trivial. In contrast, it reportedly took three years for four annotators with

graduate-level experience in linguistics working 15 hours a week to provide tags for the 4.5 million

words of text [56]. Contrast this effort to the amount of time it would take to scrape 4.5 million

words from the web. The techniques that we discuss are particularly applicable when obtaining

annotations is costly relative to the cost of obtaining instances.

The cost-reduction strategy that we focus on for the purposes of this dissertation is active

learning (aka selective sampling and optimal experimental design). Let us return to the analogy

of traditional pedagogy.1 The examples that a teacher typically selects to illustrate concepts are

rarely random but rather carefully selected to be particularly informative (without being overly

time-consuming to explain); homework is rarely randomly selected for the same reason. This way,

the teacher needs to present fewer examples on the board and can assign less homework while

achieving similar performance from the students. This process is similar in spirit to active learning:

rather than randomly selecting instances to train models, we can instead carefully select examples

that are most beneficial and least costly. If we are successful, we will achieve similar levels of

performance to randomly selecting instances, while reducing the cost of obtaining those annotations;

or, equivalently, we will achieve higher levels of performance at the same cost. In fact, active learning

has long been known to reduce the cost of training machine learning models, in theory: under

certain not-necessarily reasonable conditions, it can be shown that active learning exponentially
1The analogy here, though informative, is technically deficient in the sense that the students do not select the

examples.
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reduces the number of labels required to train a model compared to standard supervised learning

[20, 21, 29].

2.2 Formal Definitions

We now define traditional active learning formally, by first contrasting it with a formal definition of

passive learning (standard supervised machine learning). For these definitions, we limit ourselves to

the case were there is a single, infallible annotator (i.e., “oracle”), which assumption will be further

addressed as a part of this dissertation. As a matter of notation, we use parentheses () to indicate

tuples and angled brackets hi to indicate a sequence. The symbol⇠ signifies that a variable is drawn

from the specified distribution. For instance, x⇠ X means that x is drawn from the distribution of X .

Lastly, we use � to represent the append operation for sequences.

2.2.1 Supervised Machine Learning

Formally, we define a machine learning model as a function f : X 7! Y . Let FX ,Y be the set

of all such functions for X and Y . We further let X and Y be random variables with ranges

X and Y , respectively. Then a training set is a sample from the joint distribution of X and Y

(this distribution is task and domain dependent). Let DX ,Y be the set of all possible training sets

for X and Y . Thus, a supervised learner for input space X and output space Y is a function

g : DX ,Y 7!FX ,Y ; let GX ,Y be the set of all such functions for X and Y .

The example that will be used throughout this dissertation is the English POS tagging

task. The training set that we use is the Wall Street Journal (WSJ) section of the Penn Treebank

(PTB) [56], which contains approximately 1 million words of English with their corresponding

part-of-speech tags across approximately 40,000 sentences. We let X be the set of all possible

English sentences and Y be the set of all possible tag sequences. Therefore, the PTB is a member

of DX ,Y and contains about 40,000 samples from p(X ,Y ). The model that we use is a Maximum

Entropy Markov Model (MEMM) [71];2 it takes as input an English sentence and outputs the tags
2The features we use are based on Toutanova and Manning [92].
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for that sentence with between 96% and 97% accuracy. The learning algorithm we use minimizes

the conditional likelihood of the training data to produce an MEMM.

The annotated (labeled) training set required for supervised machine learning is usually

assumed to already exist. For the purposes of this dissertation, we are concerned with how such

corpora are constructed; Algorithm 1 describes how corpora are assumed to be built. Although

the algorithm is presented from the perspective of building a corpus, this is also the approach used

to construct the traditional learning curves that are pervasive in the machine learning literature.

This approach is called passive learning and it contrasts to active learning (described in the next

subsection).

Algorithmically, obtaining annotations using passive learning proceeds as follows (see

Algorithm 1). First, we obtain a sample x ⇠ X ; so doing incurs a measurable selection cost. An

annotation is obtained by drawing y from Y |x; the cost of this operation is called the annotation

cost.3 The provided annotation has some measurable benefit (e.g., increase in model accuracy on a

held-out set) as indicated on line 9. We then append the pair hx,yi to the sequence L. This process

continues until some stopping criterion is met (in practice, usually when a budget is exhausted). At

the end of the process, we are left with a sequence of samples L drawn from the joint distribution

p(X ,Y ), L 2DX ,Y ; c indicates the total cost of obtaining the annotated data, and b represents the

benefit of the data. At this point, a supervised learning function g 2 GX ,Y can be employed to

induce a model f 2FX ,Y from L. It should be noted that this protocol is equivalent to standard

supervised learning. This process is passive in the sense that the machine is not used to select which

instances to annotate.

2.2.2 Active Learning

In contrast, rather than drawing instances randomly from p(X) at each step, active learning seeks

those instances that are ideally most informative and least costly. The idea is that by intelligently
3Equivalently, x and y may be drawn jointly from p(X ,Y ), in which case SelectionCost and AnnotationCost are

conflated. We further note that other schemes not directly applicable to this dissertation are available, e.g., concept
learning, in which instances are drawn from p(X |Y ).
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Output: An annotated corpus L 2DX ,Y the total cost c, and benefit b, of obtaining L
1 L = hi
2 b = 0
3 c = 0
4 while not done do
5 x⇠ X
6 c = c+SelectionCost(x)
7 y⇠ Y |x
8 c = c+AnnotationCost(x,y|L)
9 b = b+Benefit(x,y|L)

10 L = L� (x,y)
11 end
12 return L,c,b

Algorithm 1: Passive Learning

selecting the “best” instances, the same amount of benefit can be derived from the solicited

annotations for less total cost as compared to passive learning. For the purposes of this work, we

assume that all instances are pre-annotated by the computer such that the task of the oracle is to

correct any errors rather than to annotate from scratch. Formally, active learning can be defined as

shown in Algorithm 2. First, a learning function g(·) is used to infer a model f (·) for pre-annotation

using the annotated data obtained so far, L 2DX ,Y . So doing incurs a cost that we call the training

cost. In addition, we need a scoring function that provides a measure of “best,” balancing the cost

and benefit associated with obtaining annotations for any given instance (higher is better). Formally,

a scoring function is defined as f : X ⇥DX ,Y 7! R, where the second argument represents a

sequence of already annotated items. For a given scoring function, we seek the next instance

x⇤ = argmaxx2X f(x|L). Unfortunately, this discrete optimization problem is NP-complete for

many types of tasks and scoring functions. Instead, optimization seeks the instance x from a set

of unique instances (usually samples from X), known as the pool4 P, that maximizes f(x|L). This

approach is particularly appropriate for the annotation task since we are generally only interested

in annotating the data which we have already collected. The time taken to find x⇤ is known as the

selection cost. After pre-annotating x⇤ (and incurring a usually negligible pre-annotation cost) the
4Pool-based active learning is the only scenario we consider in this dissertation since it best matches the goal of

obtaining annotations for unannotated data. Other scenarios are discussed by Carroll [13] and Settles [79].
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Input: Learning function g(·) and initial “seed” data L0 2DX ,Y

Output: An annotated corpus L 2DX ,Y ; the total cost c, and benefit b, of obtaining the
additional data

1 L = L0
2 c = 0
3 while not done do
4 f = g(L)
5 c = c+TrainingCost( f)
6 x⇤ = argmaxx2P f(x|L)
7 c = c+SelectionCost(x⇤)
8 preannotation = f (x⇤)
9 c = c+PreAnnotationCost(x⇤)

10 y⇠ Y |x⇤
11 c = c+AnnotationCost(x⇤,y,preannotation |L)
12 b = b+Benefit(x⇤,y|L)
13 L = L� (x⇤,y)
14 end
15 return L,cost

Algorithm 2: Active Learning with Pre-Annotation

oracle is then consulted to provide an annotation y⇠ Y |x⇤ and the pair (x⇤,y) is added to L. This

new information allows the scoring function to update its belief about which instances are most

beneficial; it also presumably improves the accuracy of the pre-annotation model. The process is

repeated until some criterion is met, frequently, when the budget is exhausted.

A few aspects of Algorithm 2 depart from traditional active learning. While we have

chosen to show all of the costs associated with annotation (i.e., lines 5, 7, 9, and 11), these costs

have traditionally been ignored, although there has been recent awareness of the annotation cost

(e.g., Donmez and Carbonell [24], Settles et al. [81], Tomanek and Hahn [89]). Those already

familiar with active learning will also notice that in our formulation: (1) P is a set rather than a

multiset and (2) instances are not removed from P after being added to L. If the set of samples

includes duplicates (a possibility for highly probable x), f(x|L) need only be evaluated once per

unique x. Furthermore, although learning the distribution Y |x potentially requires that we obtain

multiple annotations for each x, the number of annotations desired for each unique x does not

necessarily depend on the frequency with which the x occurs in the sample, but should instead

be determined by the scoring function, i.e., should be related to the benefit of obtaining another
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annotation relative to the cost. However, some scoring functions may be deficient in this regard and

the traditional approach may in fact be beneficial in these cases.

2.3 Transductive vs. Inductive Active Learning

Perhaps the most fundamental issue concerning active learning is the end to which it is employed.

There are at least two non-mutually-exclusive objectives of active learning. The traditional use of

active learning has been as a learning protocol (as implied by the name), in which case, the objective

is to obtain a model of maximum quality on a fixed budget (or to otherwise balance the quality of

the model with the cost of achieving that quality). We call this strategy inductive active learning

after Carroll [13]; some early examples include Angluin [3], Cohn et al. [16], Dagan and Engelson

[19], Lewis and Gale [51].

Since active learning obtains annotations for previously unannotated instances, an additional

output of active learning is a set of annotated instances (c.f. Algorithm 2). Thus, another type of

active learning is focused less on obtaining a model and more on obtaining as many high quality

annotations as makes financial sense [73, 91]. In this sense, the model (and active learning) are

means to an end, rather than the end itself. The measure of the usefulness of the final annotated

corpus is project-dependent, but is usually related to the accuracy of the annotations and the quantity

obtained; the quality of a model trained on the annotations is often used as a surrogate to measure

the quality of the corpus.

Importantly, we can obtain many more annotations if we use a model trained on the annotated

portion of the data to automatically annotate the rest of the corpus. The goal, of course, is to achieve

the highest possible quality of annotations for the entire corpus, both on the portion annotated by

human experts as well as the portion annotated by machine. If we choose instances carefully, we

can let the machine tag the instances with which it would agree with the humans, and let the humans

annotate the instances with which the machine needs help. We call this strategy transductive active
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learning after Carroll [13].5 Palmer et al. [64] and Baldridge and Palmer [7] explicitly mention this

strategy as their goal in their language documentation efforts for Uspanteko. Transductive active

learning can be achieved, though not necessarily optimally, by employing inductive active learning

to achieve a high quality model and using this model to annotate the rest of the corpus. We will take

this approach throughout most of this dissertation, given that, not surprisingly, Palmer et al. [64]

found a correlation between model accuracy and corpus accuracy.

2.4 Evaluation

Each instance that is annotated results in some benefit and incurs some cost, as depicted in Algo-

rithms 1 and 2. The exact determination of cost and benefit are typically project-dependent and

sometimes difficult to measure. Nevertheless, the performance of an AL algorithm is ultimately

determined by both the true cost and benefit, and hence, any attempt to characterize the performance

of the algorithm should measure both aspects as closely to reality as possible.

Once a suitable metric is determined for both cost and benefit, there is still a need to combine

them in a way that properly characterizes the cost/benefit trade-off. When cost and benefit are in

the same units, the net benefit (i.e., benefit less cost) can be used. However, benefit and cost are

rarely in the same units; instead, all previous work of which we are aware evaluates active learning

methods using cost/benefit curves, or derivations thereof. Cost/benefit curves are generalizations

of learning curves that parametrically plot the benefit achieved vs. cost incurred as a function of

each annotation obtained. Cost/benefit curves are useful in showing the performance of scoring

algorithms across an entire range of costs, rather than showing just the final values. This range is

particularly useful when extrapolating information from the curve in the face of uncertainty about

how much money will be spent on a project that uses the same techniques.

The remainder of this section discusses issues related to the measurement of benefit and

cost, including a discussion on dealing with realistic cost in simulation.
5Transductive active learning does not necessarily imply that a transductive model is used to annotate instances. It

simply refers to the goal of directly annotating the unseen data.
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2.4.1 Benefit

Clearly, the benefit of active learning is intrinsically tied to its purpose. The benefit of inductive

active learning is a model of the highest possible quality, and therefore the performance of the

resultant model on held-out data is a useful measure. The benefit of transductive active learning

could appropriately be measured by the accuracy of the labels on the entire data set (i.e., the portion

labeled by machine as well as that labeled by human annotators). However, this metric ignores

other difficult to measure benefits, such as the ability of other learning algorithms to successfully

learn from the same data [6], and the utility of the resultant corpus to other disciplines.

2.4.2 Cost

Similarly, the cost of an AL project depends on many variable and fixed costs [61]. Recall that there

are four costs associated with active learning: training costs, selection costs, pre-annotation costs,

and annotation costs (see Algorithm 2). To the best of our knowledge, all previous work assumes

that all but annotation costs are zero for evaluation purposes. This assumption is problematic

since it encourages algorithms of increasing complexity without consideration for the delays they

inflict. In practice, the other costs (training, selection, and pre-annotation) are either direct costs

(i.e., they cause an annotator to wait for the computer in annotator-initiated active learning), or

constitute opportunity costs (e.g., prolong the annotation process to the point that we obtain fewer

total annotations). Clearly, these should be accounted for in some form. In fact, Tomanek et al. [91]

explicitly list “fast selection time cycles” (i.e., low training, selection, and pre-annotation costs) as

requisite for practical active learning. Some work, most notably Roy and McCallum [75], Settles

and Craven [80], and Anderson and Moore [2], have discussed the scoring and training costs of

their approaches, but chose not to include them in their actual evaluation.

Often times, how the annotators will be paid is one of the more significant factors of cost, in

practice. The annotation cost depends both on which instance is being annotated as well as who is

to annotate it [5], the nature of the annotation user interface [14, 32], and fatigue and learning curve

effects [26]. The usual assumption for evaluating AL is that each instance is equally costly, which is
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unrealistic, particularly for tasks involving labeling sequences or other structured data. For instance,

all else being equal, the cost to POS-tag a one word sentence is vastly different than that of an

100-word sentence. Not surprisingly, Settles et al. [81] empirically showed that on some real-world

annotation tasks, the time to annotate instances was in fact approximately constant, whereas for

other tasks it was not. For the purposes of this dissertation, we are primarily interested in the latter.

Becker et al. [8] and Haertel et al. [34] show how the relative performance of different algorithms

is determined in part by how accurately cost is measured. Thus, evaluating results on the basis of

constant cost can be very misleading when the actual cost is variable per instance.

2.4.3 Cost in Simulation

Ideally, active learning would be evaluated using actual timings from real user studies, as in

Baldridge and Osborne [6], Hachey et al. [33], Ngai and Yarowsky [61], Palmer et al. [64]. However,

the number of experiments needed to compare competing approaches would normally make this

type of evaluation cost-prohibitive [5]. One alternative is to collect timing on data collected one

way (e.g. sequentially, randomly, or using a single active learning approach), and use it as a gold

standard when evaluating other approaches; examples include Settles et al. [81], Tomanek and

Hahn [89]. This technique implicitly assumes that the annotation time is independent of order

(since different active learning algorithms will present instances in different orders). However, this

assumption is not always acceptable. Suppose we employ pre-annotations in conjunction with active

learning and update the model that produces the pre-annotations with the feedback from active

learning (a form of correction propagation). In general, as the model performance improves over

time, instances will presumably cost less since fewer changes need to be made (a fact confirmed by

Felt et al. [28]). Thus, all else being equal, choosing to annotate an instance at the beginning of

active learning will cost more than deferring that instance until the latter stages. Hence, it is not

possible to reuse the timestamps. Arguably, the SeSAL approach of Tomanek and Hahn [88] is also

subject to time-dependencies.
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Another alternative involves simulating annotation time using a model of cost [5]. This

approach has the advantage of being able to model order dependencies. The effectiveness of these

simulations clearly depends on the quality of the cost model. To our knowledge, no previous work

has taken this approach.

2.5 Scoring Functions

The success of an AL algorithm (as depicted on a cost/benefit curve) depends largely on its scoring

function (see Algorithm 2). For this reason, the majority of active learning research has been

focused on the development of new scoring functions for different problems, models, objectives,

etc. Needless to say, the better a scoring function’s outcome represents the actual benefit and cost of

an instance, the better it will perform. In this section, we begin with a discussion of frameworks for

scoring functions: one based on the Expected Value of Sampling Information (EVSI) [69] and the

other based on Return-on-Investment (ROI); we also briefly mention other frameworks. Since these

frameworks still depend on separately defined benefit and cost functions, we follow the exposition

of the scoring frameworks with a discussion of the most commonly used benefit and cost functions.

The following definitions are pertinent to the remainder of this section. First, we assume a

benefit function6 B : DX ,Y ⇥DX ,Y 7!R that measures our overall satisfaction of a sequence L0 of

hinstance, annotationi pairs, given some previously annotated data L; we denote such a function

B(L0|L). Likewise, we need a cost function C : DX ,Y ⇥DX ,Y 7! R+ that measures the cost of

obtaining a set of annotations L0, given a set of already obtained annotations L; we denote this

function C(L0|L).

2.5.1 EVSI Scoring Functions

In this section we present scoring functions based on the Expected Value of Information (EVSI) [69].

The value of information, i.e., the usefulness of obtaining additional annotated data L0 is the
6The machine learning literature often speaks pessimistically in terms of loss functions and risk. We follow the

more optimistic terms from decision theory and use the terms benefit functions and utility. Loss is an arbitrary constant
minus the benefit.
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difference between the benefit with the additional data and the benefit without it, i.e.,

V (L0|L) = B(L0|L)�B(·|L).

Then the net value (of sampling information) of a sequence of annotations L0 given previous

annotations L, subject to budget D is:

N(L0|L) =

8
>><

>>:

V (L0|L)�C(L0|L) if C(L0|L) D

�• otherwise
.

Since the value of any given decision depends on the effect the decision has on future

decisions, the net value of any given instance is the maximum net value the decision can produce in

the future (in expectation). Formally, we define the following recursive function, which represents

the total expected net value of an instance; the parameter L0 is used during recursion to collect the

future sequence of annotations:

G(x,L0|L) = max

0

B@
EY |x,L�L0 [N(L0|L)] ,

EY |x,L�L0 [maxx0G(x0,L0 � (x,y)|L)]

1

CA .

The first argument of the outermost max is the base case, representing the scenario in which the

expected cost of further annotations outweighs the expected value of this information, i.e., the

net value would be lower if we obtained more annotations. In this case, active learning would be

expected to stop with the current sequence L0 of annotations and would return the net value of this

sequence. On the other hand, should more annotations result in a higher net value, the decision

process continues, that is, finds the next instance that is expected to (eventually) maximize the

expected net value; hence the second argument of the outermost max.
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The fully recursive EVSI scoring function scores each instance using the maximum expected

net value of that instance via the recursive function G(·):

fREC-EVSI(x|L) = G(x, · |L), (2.1)

so long as the corresponding max is positive. Otherwise, it would be irrational to proceed with

active learning. This condition is, in fact, the optimal stopping criterion.7

Unfortunately, this approach is intractable. In fact, the recursion is not necessarily guaranteed

to terminate. Tractability can be obtained by limiting the depth of recursion to some constant r

[13, 46], though optimality would only be guaranteed for the last r decisions. The greediest case

involves no recursion, resulting in:

fGREEDY-EVSI(x|L) = EY |x [N((x,y)|L)] . (2.2)

2.5.2 Return-on-Investment Scoring Function

The goal of every annotation project should be to obtain those annotations that maximize the net

value of the annotated data. This optimality is guaranteed by equation 2.1, but not by the greedy

approach in equation 2.2. Thus, other greedy approaches outside of the framework may perform

equally well or better. We now turn to the financial world for an alternative approach. Similar

to the goal of active learning, an investor’s goal is to make the highest net profit possible during

his lifetime. However, it is impossible to know all of the potential investment options that will be

available in the course of his lifetime. Thus, investing—like the approach to active learning from

equation 2.2—is a greedy operation (in both senses) in which the investor makes the best choices

now in hopes that the gains from these decisions can be used to make unknown future decisions that

will ultimately maximize net profit. One approach that investors use to attempt to greedily maximize

their net profit (analogous to net value) is to make choices on the basis of return-on-investment,
7In the context of maximization, computing B(·|L) is unnecessary other than to evaluate the stopping criterion.
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defined as the net profit over the cost. Using our established notation,

fROI(x|L) =
EY |x[N((x,y)|L)]
EY |x[C((x,y)|L)]

=
EY |x[V ((x,y)|L)�C((x,y)|L)]

EY |x[C((x,y)|L)]

=
EY |x[V ((x,y)|L)]
EY |x[C((x,y)|L)] �1 (2.3)

so long as the return-on-investment is positive (no rational investor would invest in a loss; this is the

same stopping criterion associated with equation 2.2).

All else being equal, if two investment options are equally costly, ROI prefers the investment

that has the highest net profit. If two investment options would yield the same net profit, ROI gives

preference to the one that costs less; we can use the extra money on other investments to similarly

maximize our profits. By greedily maximizing the cost/benefit (profit) ratio, early returns can be

reinvested more quickly, hopefully resulting in higher net profit for the same cost as alternative

investing strategies. For essentially these same reasons, return-on-investment is a viable alternative

to the greedy net EVSI framework (equation 2.2) in active learning. Another major advantage of

return-on-investment is that the net value need not be explicitly computed and therefore cost and

benefit need not be expressed in the same units.8

When each instance is presumed to be equally costly, then the two scoring functions

(fGREEDY-EVSI and fROI) are equivalent. However, as discussed in Section 2.4.2, structured learning

problems have necessitated a means to deal with variable cost, and many of the early work in active

learning for structured problems can be seen as instances of the ROI-framework. For instance,

Engelson and Dagan [27] normalized their measure of uncertainty for POS-tagging by sentence

length. If the cost to tag a sentence is a constant scalar multiple of the number of sentences, then

length normalization is an instance of ROI. Other notable sequence labeling problems that do the

same include Becker et al. [8], Hachey et al. [33], Settles and Craven [80], Tomanek et al. [91]. Tang

et al. [86] and Hwa [42] use length normalization for parse trees, and Kapoor et al. [46] assumes that
8However, they must be converted to the same units in order to correctly compute the stopping criterion.
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cost is a scalar multiple of the length of voicemails. However, Settles et al. [81] present evidence

that the relationship between cost and length of instances is not simply linear.

The general framework for return-on-investment was independently proposed by Donmez

and Carbonell [24] and Settles et al. [81]. Both essentially proposed using any of the heuristic

benefit functions above. While the former showed positive experimental results using return-on-

investment, the latter showed mixed results. Tomanek and Hahn [89] show that the benefit function

must be carefully chosen. While the unmodified benefit function performed poorly, the modified

function outperformed all other cost-conscious algorithms they tried (see next section) and was

recommended by those authors.

2.5.3 Other Cost-Sensitive Scoring Functions

In addition to employing return-on-investment, Tomanek and Hahn [89] propose two novel ap-

proaches: constraining the sampling to a maximum cost per example and a linear combination of

the utility rank and cost rank. Their results slightly favor the return-on-investment method when

an appropriate utility function is used (in their case, they exponentiate a confidence score). The

other methods require tuning a corpus-specific parameter, which may not be possible during active

learning in practice.

2.6 Cost and Benefit Functions

As the cost-conscious scoring functions depend on cost and benefit functions, this section examines

these functions more in-depth.

2.6.1 Decision Theory Benefit Functions

A decision-theoretic purist would insist on very specific benefit functions for inductive and trans-

ductive active learning. First, we define a utility function, U : Y ⇥Y 7! R, which gives a measure

of the satisfaction received when choosing annotation y (first argument) when the true label is ŷ

(second argument) for instance x. Since the true annotation is unknown, we consider its value in
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expectation; the optimal annotation for instance x maximizes the expected utility. The corresponding

decision function is:

d (x) = argmax
y

EŶ |x,L[U(y, ŷ)].

Induction seeks to maximize this quantity, on average, across all possible instances (i.e., maximize

generalization). Formally, the benefit function is:

BIND(L0|L) = EX̃


max

y
EỸ |x̃,L�L0 [U(y, ỹ)]

�
. (2.4)

Roy and McCallum [75] advocate this approach, although they omit the cost component in their

framework. Liang et al. [52] also essentially use this same approach in their measurement frame-

work; however, in their actual experiments, they assume unit cost.

In practice, the actual distribution of X is not known. However, stochastic integration can

be used to compute the expectation in equation 2.4 using a sequence of N samples, x1, . . . ,xn ⇠ X .

This leads to the benefit function for transductive learning:

BTRANS(L0|L)⇡
1
N

N

Â
i

max
y

EYi|xi,L�L0 [U(y,yi)]. (2.5)

Roy and McCallum [75] employ this approach in their experiments (although they only compute

the benefit over held-out, unlabeled examples).

There is a prevalent variant of the above benefit functions that, rather than considering

maximum expected utility, instead considers the average expected utility:

BAVG(L0|L)⇡
1
N

N

Â
i

h
EYi|xi,L�L0

h
EỸi|xi,L�L0 [U(yi, ỹi)]

ii
;

Anderson and Moore [2], Margineantu [58], etc. use this variant. If we assume that p(Yi =

yi|xi,L�L0) = 1 for all instances xi that an oracle has annotated with yi, then the outer expectation

disappears for these instances; Kapoor et al. [46] use precisely this approach.
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2.6.2 Heuristic Benefit Functions

The main drawback to the previous benefit functions is that they can be relatively expensive to

compute, especially in the context of structured learning where the expectations are considerably

more expensive to compute than in simple classification tasks. However, many heuristic benefit

functions exist which typically avoid the expectations altogether. We claim that some of these

heuristics can be derived from equation 2.2 by applying additional simplifying assumptions; others

can probably be seen as nothing more than heuristics. We discuss several of the heuristics at a high

level below; a more in-depth discussion of most of the approaches, including many representative

citations, is provided by Settles [79].

One of the most influential heuristics is known as uncertainty sampling [51], or as we like

to call it, query-by-uncertainty (QBU). Intuitively, if a model is already certain about an annotation,

requesting an annotation is not likely to be helpful; conversely, the less sure the model is about

what the annotation could be for an instance, the more likely it is that human input could help the

model. There are many definitions of uncertainty, including least confidence [18], margin [76],

entropy [42], etc. Settles [79] overviews other useful measures of uncertainty for sequence labeling.

Formally, entropy-based uncertainty is defined as:

BENTROPY(x,y|L) = EY 0|x,L[� log p(y0|x,L)]

Note the lack of dependency on y, which in turn eliminates the expectation from equation 2.2. This

function inherently prefers instances that are probably wrong, which is similar to a utility function

with higher weights when the annotations are not equal than when they are, e.g., U(y, ŷ) = 1(y 6= ŷ).

Another important benefit function is known as query-by-committee (QBC) [19, 82]. The

idea is that if we have multiple diverse models, known as the committee, then instances for which

the committee disagrees most about the predicted annotation could benefit most from human

annotations. There are several approaches to creating a committee, including: training different

types of models on the same data, sampling models of the same class from the posterior distribution
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of model parameters given the annotated data [27], building models from the same class using

bootstrap samples from the training data [1], and using models with different features extracted

from the data [45]. Likewise, there are many approaches to quantifying uncertainty. Since QBC

methods can be seen as uncertainty-based methods, where the distribution over which uncertainty is

computed is the distribution of predictions from the committee of votes. Thus, the same uncertainty

measures used for QBU may also be used for QBC. However, due to the relatively small size of the

committees (typically 3-5 members), structured learning techniques approximate the uncertainty

measures by considering the votes of each individual prediction in the structure. For example,

Dagan and Engelson [19] use the sum of the entropy of the per-token vote distribution; others are

detailed by Settles [79].

Many of these methods, especially QBU and QBC, favor instances that are outliers or noise,

and hence are not always particularly useful. This bias can be corrected by weighting the original

benefit by the density of the instance, thereby favoring instances that are common and therefore

presumably more useful (at the risk of sampling instances that risk diversity). To be clear, the benefit

functions in section 2.6.1 already account for density in the expectations; density-weighting is only

needed to correct deficiencies in the heuristics. Since heuristics are often necessary in practice,

Settles and Craven [80] and Settles [78] present a general framework for density-weighted methods;

others who have used the method include Roy and McCallum [75] and McCallum and Nigam [59].

The general consensus is that, when properly tuned, the density-weighted methods outperform

their non-weighted counterparts. However, density-weighted methods can be expensive, rely on an

arbitrarily selected distance function, and have a parameter that must be tuned, thereby putting into

question their practicality.

2.6.3 Cost

Early work can be seen as having implicitly assumed that each instance was equally costly, in which

case, the constant cost can be dropped in the context of maximization.9 Thus, instance selection
9Consequently, no conversion is necessary between units of benefit and cost, except for stopping criteria.
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reduces to maximization of (expected) benefit. For many classification problems, this assumption

may be acceptable, but structured learning problems pose new problems. Even previous work based

on decision theory either omits the term in the theory (e.g. Roy and McCallum [75]) or assumes unit

cost for the actual experiments, e.g., that annotating each sentence is equally costly [52], annotating

each token is equally costly [27, 91], annotating each word type is equally costly [52], or that

listening to voicemails takes the same amount of time [46]. Donmez and Carbonell [24] do use

variable cost in one experiment, but it is a linear function of the proximity of the point to the decision

boundary, rather than a real world cost.10

A better approach is to explicitly model cost. In some cases, it is possible to know costs

ahead of time, such as the cost-of-goods needed to perform an experiment [47], or the hourly

rate of different workers [24]. However, in many practical scenarios–especially with structured

learning–the cost will not be known beforehand and must be learned during active learning (as with

all other parameters relevant to active learning). Clearly, more work needs to be done to employ

and model realistic costs in research in order to provide more credible results for practitioners.

2.7 Characteristics of Real Annotators

Nearly all previous work in active learning has assumed a single, infallible oracle with perfectly

predictable time. In fact, Algorithm 2 implicitly makes these assumptions. Interesting work has

been done to study the actual characteristics of real annotators. Although outside of the context of

active learning, one comprehensive study of characteristics of annotators across multiple tasks was

done by Settles et al. [81]. They found that annotation times vary substantially from one annotator

to another; that there tends to be a learning curve effect, albeit very brief; that some annotators get

distracted thus extending annotation time; and, perhaps most importantly, that annotation times can

be modeled reasonably well. In a separate study, Hachey et al. [33] found that, despite providing a

sizeable overall reduction in cost, active learning nevertheless tends to select instances that result

in lower inter-annotator agreement and higher annotation times. This tendency was confirmed by
10Although such points will indeed be more costly, the costs are almost certainly non-linear.
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Palmer et al. [64] on a language documentation task. They additionally found that an expert on the

language benefited from active learning, while the non-expert did better with passive learning (and

in fact, appears to have higher accuracy than the expert on randomly selected instances). However,

the expert was typically faster. Another study by Arora et al. [5] confirmed that the proficiency of

the annotator in the language of the task at hand affected their annotation speed.

These studies emphasize at least three important aspects of annotators in a practical active

learning environment. First, most systems will employ multiple annotators. Second, all annotators

provide noisy annotations–some more so than others. Third, annotators will not necessarily be

equally costly (especially when accounting for opportunity costs and differences in accuracy). In

addition to these aspects, Donmez and Carbonell [24] suggest that annotators may not always be

willing to provide annotations for every instance with which they are presented.

2.8 Learner-Initiated vs. Annotator-Initiated Active Learning

There are two paradigms in which active learning can be used. Either the computer can ask an

annotator for an annotation, which we call learner-initiated active learning, or the annotator can

request an item from the computer, which we term annotator-initiated active learning. In the

former, the computer does all of the processing necessary to choose the best item and the best

person to annotate the item and then sends a request to the selected annotator, e.g., sending an

email or text message requesting that the annotator log in to an annotation system to perform the

single annotation (although requests could certainly be batched). If choosing the next item and next

annotator is computationally expensive, long periods of time could pass before another annotation

is requested. At the very least, the overall annotation effort would be prolonged. Note, also, that

between the time the annotator is notified and the time that the annotator finishes annotating, the

computer may not be able to do much. The result is tremendous opportunity costs of the type that

are difficult to both measure and predict; hence they are ignored in research. Ignoring these costs is

equivalent to assuming that annotators are instantly available.
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Annotator-initiated active learning, on the other hand, more closely resembles actual an-

notation in practice. Typically, an annotator will log in to the system at her convenience and in

accordance with her contract. After logging in, the system will present her with a continuous stream

of instances to annotate until she logs out, or the system decides to stop providing instances. The

difference between the two paradigms is analogous to push and pull chains or the observer and

iterator design patterns. Finally, note that the distinction between the two paradigms disappears

when there is a single annotator who is constantly and instantly available. Although this assumption

is prevalent in active learning research, it is rarely true in practice. Unfortunately, all previous work

is based on the learner-initiated paradigm.
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Chapter 3

Roadmap

The preceding chapter establishes the need for active learning techniques in more realistic

scenarios, and such techniques are the focus of this dissertation. Using the newly introduced

terminology from the preceding chapter, we can precisely formulate our thesis statement as follows:

Corpus annotation via cost-conscious, transductive active learning can reduce the total cost of

annotating instances of varying benefit and cost in an annotator-initiated environment. Furthermore,

under these same conditions, cost reductions are also likely with multiple, fallible annotators of

differing levels of accuracy and cost; we present methods for doing so.

Each of the remaining chapters in this dissertation investigates one or more aspects of this

thesis statement. Since the majority of the chapters in this dissertation were published independently

in various academic venues,1 this chapter relates these individual papers to the thesis statement

using the framework established in the previous chapter. We do so by framing each chapter in its

historic context.

Our initial foray continues a line of work targeting the use of active learning as a method for

annotating corpora (as opposed to inductive active learning; e.g., Baldridge and Osborne [6], Hwa

[42], Osborne and Baldridge [63], Tomanek et al. [91]). Full transductive active learning, however,

takes things a step further: a machine could automatically annotate the remaining data to further

augment the corpus. This use of active learning is the stated objective of Chapter 4, published in the

Proceedings of the Linguistic Annotation Workshop, 2007 [73] (although we do not use the term

“transductive” in that chapter), and was novel at the time. In that chapter, we mostly rely on the
1Each published paper is included verbatim, with the exception of some minor formatting changes and occasional

spelling corrections. Errata and addenda have been added as appropriate to individual chapters.
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traditional active learning techniques of the time to achieve the new goal, i.e., we use inductive

active learning to learn a model that could be used to label the unannotated portion of the corpus,

though we do not actually report the results of such automatic annotation. We continue this approach

in all other chapters of this dissertation except for Chapter 10.

In our aforementioned work, we followed the precedent of measuring performance based

on the number of instances that were selected for annotation. However, this investigation helped

us realize that, in reality, “instances [are] of varying . . . cost,” particularly in the case of structured

learning problems such as our part-of-speech tagging task. Demonstrating that our techniques

“reduce the total cost” of annotation requires the ability to account for this variable cost. To this end

we conducted a user study to investigate the components of cost on our target task, part-of-speech

tagging, which was published in the Proceedings of the International Conference on Language

Resources and Evaluation, 2008 [74]. This article is found in Chapter 5. From the data obtained

from this study, we built a model of the amount of time required to tag sentences. This model allows

us to measure the cost of different algorithms while simulating active learning. Without the model,

the sheer number of would-be human hours required to perform the experiments in subsequent work

would have been prohibitively costly. But equally importantly, the model derived from real user

study data enables us to demonstrate much more realistically that the total cost of annotation has

been reduced in the experiments presented in the remainder of the dissertation.

Although we prefer to measure the cost of annotation in terms of time (“time is money”),

cost is project-dependent. For instance, a project may instead choose to pay annotators for each

sentence they annotate or each word they annotate. We were curious how various existing active

learning algorithms performed under various costs—including, of course, time, as measured by our

recently developed model of cost. Our empirical investigation is presented in Chapter 6, published

in Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on

Human Language Technologies: Short Papers (2008) [34]. Not surprisingly, we found that the

relative performance of algorithms depends on the manner in which cost is measured; in the case of
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measuring cost by the number of words that an annotator changes, no algorithm outperformed the

random baseline.

The fact that performance of the algorithms depends on how cost is measured makes active

learning a risky proposition: all else being equal, if a project’s true costs differ from those measured

in any experiments, the results may be invalid and in fact worse than random.2 Clearly, then,

algorithms that perform equally well regardless of how cost is measured are desirable.

This unfortunate reality brings the notion of “cost-conscious” algorithms to the forefront.

Algorithms that explicitly model the cost being measured are considered cost-conscious. Chapter 6

evaluates an existing algorithm for active learning on sequence tasks which simply divides the result

of a “standard” selection function by the length of the sequence. Since the length of the sequence

is highly correlated with the time required to annotate the sequence [34], it performs well. More

importantly, we recognized that this approach of normalizing an estimate of benefit (the output

of an existing active learning scoring function), by an estimate of cost (sequence length), was an

instance of a more general techniques for cost-conscious active learning: return-on-investment (ROI).

Chapter 7, published in the Proceedings of the NIPS Workshop on Cost-Sensitive Learning (2013)

[36], and Chapter 8, an unsubmitted manuscript, present theoretical justifications and empirical

results for return-on-investment-based active learning. Note that ROI requires a cost and a benefit

estimator, which, given an instance, can estimate the cost and benefit that the instance will provide.

Thus, ROI adeptly handles the case of “instances of varying cost and benefit.”

While working on ROI, we noticed that all prior research in the field of active learning

is based on learner-initiation: the computer selects one or more instances and then requests an

annotation from the human annotator. In this scenario, the computer must wait both for the annotator

to begin working and for the annotator to finish the assigned work. Chapter 9 turns previous research

on its head by examining the scenario in which annotators request instances from the computer;

although we never use the term “annotator-initiated,” the chapter makes clear that this scenario

is the motivation for the study. While learner-initiated techniques are trivially converted to an
2In reality, without further information the true results are as likely to be better than the experiments show as they

are to be worse.
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annotator-initiated approach, the paradigm shift brings to light a new problem: annotators must wait

for the computation to be performed. This “wait cost” may involve direct costs and/or opportunity

costs. Chapter 9, published in the Proceedings of the NAACL HLT 2010 Workshop on Active

Learning for Natural Language Processing, 2010 [35], is the first work of which we are aware to

account for this cost. The chapter focuses on a solution to eliminating wait cost, which involves,

among other things, performing computation while the annotator is at work. This “parallelization”

of effort is the focus of the title of the chapter, “Parallel Active Learning” (we also mention how the

computation itself can be parallelized). We call this framework the “no-wait” framework.

The last remaining issue within the scope of this dissertation is that of “multiple, fallible

annotators of differing levels of accuracy and cost.” Chapter 8 extends the “no-wait” framework

to allow for multiple annotators, and evaluates results using 20 identical oracles. Chapter 10

(unsubmitted manuscript) further extends that work for use with multiple, fallible annotators of

differing levels of accuracy and cost. We present a Bayesian model that is designed to simultaneously

infer ground truth annotations from noisy annotations, infer each individual annotator’s accuracy,

and predict its own accuracy on unseen data (without the use of a held-out set). We have also

extended ROI-based active learning to the multiple annotator environment. The detailed design of

these approaches is presented in Chapter 10, but experimentation remains for future work.

Most of our work has been done using maximum entropy Markov models—a class of

sequence models. Using sequence models in active learning often involves the computation of

expectations. If done naı̈vely, computing expected values would require time exponential in the

length of the sequence. Instead, approximations are often used. In Appendix A, we present

an approach to efficiently computing expectations exactly in sequence models using dynamic

programming.

Taken as a whole, these chapters introduce cost-conscious active learning (i.e., the class

of algorithms we call ROI). We show that these techniques can reduce the cost of annotation in

realistic environments.
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Chapter 4

Active Learning for Part-of-Speech Tagging: Accelerating Corpus Annotation†

Abstract

In the construction of a part-of-speech annotated corpus, we are constrained by a fixed budget. A

fully annotated corpus is required, but we can afford to label only a subset. We train a Maximum

Entropy Markov Model tagger from a labeled subset and automatically tag the remainder. This

paper addresses the question of where to focus our manual tagging efforts in order to deliver an

annotation of highest quality. In this context, we find that active learning is always helpful. We

focus on Query by Uncertainty (QBU) and Query by Committee (QBC) and report on experiments

with several baselines and new variations of QBC and QBU, inspired by weaknesses particular to

their use in this application. Experiments on English prose and poetry test these approaches and

evaluate their robustness. The results allow us to make recommendations for both types of text and

raise questions that will lead to further inquiry.

4.1 Introduction

We are operating (as many do) on a fixed budget and need annotated text in the context of a larger

project. We need a fully annotated corpus but can afford to annotate only a subset. To address

our budgetary constraint, we train a model from a manually annotated subset of the corpus and

automatically annotate the remainder. At issue is where to focus manual annotation efforts in order
†Eric Ringger, Marc Carmen, Robbie Haertel, Kevin Seppi, Deryle Lonsdale, Peter McClanahan, James Carroll, and

Noel Ellison. Assessing the costs of machine-assisted corpus annotation through a user study. In Proceedings of the

international Conference on Language Resources and Evaluations, 2008.
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to produce a complete annotation of highest possible quality. A follow-up question is whether these

techniques work equally well on different types of text.

In particular, we require part-of-speech (POS) annotations. In this paper we employ a

state-of-the-art tagger on both prose and poetry, and we examine multiple known and novel active

learning (or sampling) techniques in order to determine which work best in this context. We show

that the results obtained by a state-of-the-art tagger trained on a small portion of the data selected

through active learning can approach the accuracy attained by human annotators and are on par with

results from exhaustively trained automatic taggers.

In a study based on English language data presented here, we identify several active learning

techniques and make several recommendations that we hope will be portable for application to other

text types and to other languages. In section 4.2 we briefly review the state of the art approach to

POS tagging. In section 4.3, we survey the approaches to active learning employed in this study,

including variations on commonly known techniques. Section 4.4 introduces the experimental

regime and presents results and their implications. Section 4.5 draws conclusions and identifies

opportunities for follow-up research.

4.2 Part of Speech Tagging

Labeling natural language data with part-of-speech tags can be a complicated task, requiring much

effort and expense, even for trained annotators. Several efforts, notably the Alembic workbench

[23] and similar tools, have provided interfaces to aid annotators in the process.

Automatic POS tagging of text using probabilistic models is mostly a solved problem but

requires supervised learning from substantial amounts of training data. Previous work demonstrates

the suitability of Hidden Markov Models for POS tagging [9, 49]. More recent work has achieved

state-of-the-art results with Maximum entropy conditional Markov models (MaxEnt CMMs, or

MEMMs for short) [71, 92, 93]. Part of the success of MEMMs can be attributed to the absence of

independence assumptions among predictive features and the resulting ease of feature engineering.
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To the best of our knowledge, the present work is the first to present results using MEMMs in an

active learning framework.

An MEMM is a probabilistic model for sequence labeling. It is a Conditional Markov Model

(CMM as illustrated in Figure 4.1) in which a Maximum Entropy (MaxEnt) classifier is employed

to estimate the probability distribution p(ti|w, t1...i�1)⇡ pME(ti|wi, fi, ti�1, ti�2) over possible labels

for each element in the sequence—in our case, for each word wi in a sentence w. The MaxEnt

model is trained from labeled data and has access to any predefined attributes (represented here

by the collection fi) of the entire word sequence and to the labels of previous words (t1...i�1). Our

implementation employs an order-two Markov assumption so the classifier has access only to the

two previous tags ti�1, ti�2. We refer to the features (wi, fi, ti�1, ti�2) from which the classifier

predicts the distribution over tags as “the local trigram context”.

A Viterbi decoder is a dynamic programming algorithm that applies the MaxEnt classifier to

score multiple competing tag-sequence hypotheses efficiently and to produce the best tag sequence,

according to the model. We approximate Viterbi very closely using a fast beam search. Essentially,

the decoding process involves sequential classification, conditioned on the (uncertain) decisions of

the previous local trigram context classifications. The chosen tag sequence t̂ is the tag sequence

maximizing the following quantity:

t̂ = argmax
t

P(t|w)

= argmax
t

n

’
i=1

pME(ti|wi, fi, ti�1, ti�2).

The features used in this work are reasonably typical for modern MEMM feature-based POS

tagging and consist of a combination of lexical, orthographic, contextual, and frequency-based

information. In particular, for each word the following features are defined: the textual form of the

word itself, the POS tags of the preceding two words, and the textual form of the following word.

Following Toutanova and Manning [92] approximately, more information is defined for words that
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Figure 4.1: Simple Markov order 2 CMM, with focus on the i-th hidden label (or tag).

are considered rare (which we define here as words that occur fewer than fifteen times). We consider

the tagger to be near-state-of-the-art in terms of tagging accuracy.

4.3 Active Learning

The objective of this research is to produce more high quality annotated data with less human

annotator time and effort. Active learning is an approach to machine learning in which a model is

trained with the selective help of an oracle. The oracle provides labels on a sufficient number of

“tough” cases, as identified by the model. Easy cases are assumed to be understood by the model and

to require no additional annotation by the oracle. Many variations have been proposed in the broader

active learning and decision theory literature under many names, including “active sampling” and

“optimal sampling.”

In active learning for POS tagging, as in other applications, the oracle can be a human. For

experimental purposes, a human oracle is simulated using pre-labeled data, where the labels are

hidden until queried. To begin, the active learning process requires some small amount of training

data to seed the model. The process proceeds by identifying the data in the given corpus that should

be tagged first for maximal impact.

4.3.1 Active Learning in the Language Context

When considering the role of active learning, we were initially drawn to the work in active learning

for classification. In a simple configuration, each instance (document, image, etc.) to be labeled
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can be considered to be independent. However, for active learning for the POS tagging problem we

considered the nature of human input as an oracle for the task. As an approximation, people read

sentences as propositional atoms, gathering contextual cues from the sentence in order to assemble

the meaning of the whole. Consequently, we thought it unreasonable to choose the word as the

granularity for active learning. Instead, we begin with the assumption that a human will usually

require much of the sentence or at least local context from the sentence in order to label a single

word with its POS label. While focusing on a single word, the human may as well label the entire

sentence or at least correct the labels assigned by the tagger for the sentence. Consequently, the

sentence is the granularity of annotation for this work. (Future work will question this assumption

and investigate tagging a word or a subsequence of words at a time.) This distinguishes our work

from active learning for classification since labels are not drawn from a fixed set of labels. Rather,

every sentence of length n can be labeled with a tag sequence drawn from a set of size T n, where T

is the size of the per-word tag set. Granted, many of the options have very low probability.

To underscore our choice of annotating at the granularity of a sentence, we also note that

a maximum entropy classifier for isolated word tagging that leverages attributes of neighboring

words–but is blind to all tags–will underperform an MEMM that includes the tags of neighboring

words (usually on the left) among its features. Previous experiments demonstrate the usefulness of

tags in context on the standard Wall Street Journal data from the Penn Treebank [57]. A MaxEnt

isolated word tagger achieves 93.7% on words observed in the training set and 82.6% on words

unseen in the training set. Toutanova and Manning [92] achieves 96.9% (on seen) and 86.9% (on

unseen) with an MEMM. They surpassed their earlier work in 2003 with a “cyclic dependency

network tagger,” achieving 97.2%/89.05% (seen/unseen) [93]. The generally agreed upon upper

bound is around 98%, due to label inconsistencies in the Treebank. The main point is that effective

use of contextual features is necessary to achieve state of the art performance in POS tagging.

In active learning, we employ several sets of data that we refer to by the following names:

Initial Training the small set of data used to train the original model before active learning starts

Training data that has already been labeled by the oracle as of step i in the learning cycle
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Unannotated data not yet labeled by the oracle as of step i

Test (specifically Development Test) labeled data used to measure the accuracy of the model at

each stage of the active learning process. Labels on this set are held in reserve for comparison

with the labels chosen by the model. It is the accuracy on this set that we report in our

experimental results in Section 4.4.

Note that the Training set grows at the expense of the Unannotated set as active learning progresses.

Active Learning for POS Tagging consists of the following steps:

1. Train a model with Initial Training data

2. Apply model to Unannotated data

3. Compute potential informativeness of each sentence

4. Remove top n sentences with most potential informativeness from Unannotated data and give

to oracle

5. Add n sentences annotated (or corrected) by the oracle to Training data

6. Retrain model with Training data

7. Return to step 2 until stopping condition is met.

There are several possible stopping conditions, including reaching a quality bar based on

accuracy on the Test set, the rate of oracle error corrections in the given cycle, or even the cumulative

number of oracle error corrections. In practice, the exhaustion of resources, such as time or money,

may completely dominate all other desirable stopping conditions.

Several methods are available for determining which sentences will provide the most

information. Expected Value of Sample Information (EVSI) [69] would be the optimal approach

from a decision theoretic point of view, but it is computationally prohibitive and is not considered

here. We also do not consider the related notion of query-by-model-improvement or other methods

[2, 75]. While worth exploring, they do not fit in the context of this current work and should be
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considered in future work. We focus here on the more widely used Query by Committee (QBC) and

Query by Uncertainty (QBU), including our new adaptations of these.

Our implementation of maximum entropy training employs a convex optimization procedure

known as LBFGS. Although this procedure is relatively fast, training a model (or models in the case

of QBC) from scratch on the training data during every round of the active learning loop would

prolong our experiments unnecessarily. Instead we start each optimization search with a parameter

set consisting of the model parameters from the previous iteration of active learning (we call this

“Fast MaxEnt”). In practice, this converges quickly and produces equivalent results.

4.3.2 Query by Committee

Query by Committee (QBC) was introduced by Seung et al. [82]. Freund et al. [29] provided a

careful analysis of the approach. Engelson and Dagan [27] experimented with QBC using HMMs

for POS tagging and found that selective sampling of sentences can significantly reduce the number

of samples required to achieve desirable tag accuracies. Unlike the present work, Engelson & Dagan

were restricted by computational resources to selection from small windows of the Unannotated set,

not from the entire Unannotated set. Related work includes learning ensembles of POS taggers, as

in the work of Brill and Wu [10], where an ensemble consisting of a unigram model, an N-gram

model, a transformation-based model, and an MEMM for POS tagging achieves substantial results

beyond the individual taggers. Their conclusion relevant to this paper is that different taggers

commit complementary errors, a useful fact to exploit in active learning. QBC employs a committee

of N models, in which each model votes on the correct tagging of a sentence. The potential

informativeness of a sentence is measured by the total number of tag sequence disagreements

(compared pair-wise) among the committee members. Possible variants of QBC involve the number

of committee members, how the training data is split among the committee members, and whether

the training data is sampled with or without replacement.

A potential problem with QBC in this application is that words occur with different frequen-

cies in the corpus. Because of the potential for greater impact across the corpus, querying for the

36



www.manaraa.com

Figure 4.2: Distribution over tags for the word “hurdle” in italics. The local trigram context is in
boldface.

tag of a more frequent word may be more desirable than querying for the tag of a word that occurs

less frequently, even if there is greater disagreement on the tags for the less frequent word. We

attempted to compensate for this by weighting the number of disagreements by the corpus frequency

of the word in the full data set (Training and Unannotated). Unfortunately, this resulted in worse

performance; solving this problem is an interesting avenue for future work.

4.3.3 Query by Uncertainty

The idea behind active sampling based on uncertainty appears to originate with Thrun and Möller

[87]. QBU has received significant attention in general. Early experiments involving QBU were

conducted by Lewis and Gale [51] on text classification, where they demonstrated significant benefits

of the approach. Lewis and Catlett [50] examined its application for non-probabilistic learners in

conjunction with other probabilistic learners under the name “uncertainty sampling.” Anderson and

Moore [2] explored QBU using HMMs and concluded that it is sometimes advantageous. We are

not aware of any published work on the application of QBU to POS tagging. In our implementation,

QBU employs a single MEMM tagger. The MaxEnt model comprising the tagger can assess the

probability distribution over tags for any word in its local trigram context, as illustrated in the

example in Figure 4.2.

In Query by Uncertainty (QBU), the informativeness of a sample is assumed to be the uncer-

tainty in the predicted distribution over tags for that sample, that is the entropy of

pME(ti|wi, fi, ti�1, ti�2). To determine the potential informativeness of a word, we can measure
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the entropy in that distribution. Since we are selecting sentences, we must extend our measure of

uncertainty beyond the word.

4.3.4 Adaptations of QBU

There are several problems with the use of QBU in this context:

• Some words are more important; i.e., they contain more information perhaps because they

occur more frequently.

• MaxEnt estimates per-word distributions over tags, not per-sentence distributions over tag

sequences.

• Entropy computations are relatively costly.

We address the first issue in a new version of QBU which we call “Weighted Query by Uncertainty”

(WQBU). In WQBU, per-word uncertainty is weighted by the word’s corpus frequency.

To address the issue of estimating per-sentence uncertainty from distributions over tag

sequences, we have considered several different approaches. The per-word (conditional) entropy is

defined as follows:

H(Ti|wi, fi, ti�1, ti�2) =� Â
ti2Tagset

pME(ti|wi, fi, ti�1, ti�2) · log pME(ti|wi, fi, ti�1, ti�2)

where Ti is the random variable for the tag ti on word wi, and the features of the context in which wi

occurs are denoted, as before, by the collection fi and the prior tags ti�1, ti�2. It is straightforward

to calculate this entropy for each word in a sentence from the Unannotated set, if we assume that

previous tags ti�1, ti�2 are from the Viterbi (best) tag sequence (for the entire sentence) according

to the model.

For an entire sentence, we estimate the tag-sequence entropy by summing over all possible

tag sequences. However, computing this estimate exactly on a 25-word sentence, where each word

can be labeled with one of 35 tags, would require 3525 = 3.99 ·1038 steps. Instead, we approximate
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the per-sentence tag sequence distribution entropy by summing per-word entropy:

Ĥ(T |w)⇡� Â
wi2w

H(Ti|wi, fi, ti�1, ti�2)

This is the approach we refer to as QBU in the experimental results section. We have

experimented with a second approach that estimates the per-sentence entropy of the tag-sequence

distribution by Monte Carlo decoding. Unfortunately, current active learning results involving this

MC POS tagging decoder are negative on small Training set sizes, so we do not present them here.

Another alternative approximation worth pursuing is computing the per-sentence entropy using the

n-best POS tag sequences. Very recent work by Mann and McCallum [55] proposes an approach in

which exact sequence entropy can be calculated efficiently. Further experimentation is required to

compare our approximation to these alternatives.

An alternative approach that eliminates the overhead of entropy computations entirely is to

estimate per-sentence uncertainty with 1�P(t̂), where t̂ is the Viterbi (best) tag sequence. We call

this scheme QBUV. In essence, it selects a sample consisting of the sentences having the highest

probability that the Viterbi sequence is wrong. To our knowledge, this is a novel approach to active

learning.

4.4 Experimental Results

In this section, we examine the experimental setup, the prose and poetry data sets, and the results

from using the various active learning algorithms on these corpora.

4.4.1 Setup

The experiments focus on the annotation scenario posed earlier, in which budgetary constraints afford

only some number x of sentences to be annotated. The x-axis in each graph captures the number

of sentences. For most of the experiments, the graphs present accuracies on the (Development)

39



www.manaraa.com

Test set. Later in this section, we present results for an alternate metric, namely number of words

corrected by the oracle.

In order to ascertain the usefulness of the active learning approaches explored here, the results

are presented against a baseline in which sentences are selected randomly from the Unannotated

set. We consider this baseline to represent the use of a state-of-the-art tagger trained on the same

amount of data as the active learner. Due to randomization, the random baseline is actually distinct

from experiment to experiment without any surprising deviations. Also, each result curve in each

graph represents the average of three distinct runs.

Worth noting is that most of the graphs include active learning curves that are run to

completion; namely, the rightmost extent of all curves represents the exhaustion of the Unannotated

data. At this extreme point, active learning and random sample selection all have the same Training

set. In the scenarios we are targeting, this far right side is not of interest. Points representing smaller

amounts of annotated data are our primary interest.

In the experiments that follow, we address several natural questions that arise in the course

of applying active learning. We also compare the variants of QBU and QBC. For QBC, committee

members divide the training set (at each stage of the active learning process) evenly. All committee

members and final models are MEMMs. Likewise, all variants of QBU employ MEMMs.

4.4.2 Data Sets

The experiments involve two data sets in search of conclusions that generalize over two very

different kinds of English text. The first data set consists of English prose from the POS-tagged

one-million-word Wall Street Journal text in the Penn Treebank (PTB) version 3. We use a random

sample of the corpus constituting 25% of the traditional training set (sections 2-21). Initial Training

data consists of 1% of this set. We employ section 24 as the Development Test set. Average sentence

length is approximately 25 words.

Our second experimental set consists of English poetry from the British National Corpus

(BNC) [31, 41, 70]. The text is also fully tagged with 91 parts of speech from a different tag set
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100 200 400 800 1600 3200 6400
QBU 76.26 86.11 90.63 92.27 93.67 94.65 95.42
QBUV 76.65 85.09 89.75 92.24 93.72 94.96 95.60
QBC 76.19 85.77 89.37 91.78 93.49 94.62 95.36
Base 76.57 82.13 86.68 90.12 92.49 94.02 95.19

Table 4.1: The best models (on PTB WSJ data) with various amounts of annotation (columns).

than the one used for the PTB. The BNC XML data was taken from the files B1C.xml, CBO.xml,

and H8R.xml. This results in a set of 60,056 words and 8,917 sentences.

4.4.3 General Results

To begin, each step in the active learning process adds a batch of 100 sentences from the Unannotated

set at a time. Figure 4.3 demonstrates (using QBU) that the size of a query batch is not significant

in these experiments.

The primary question to address is whether active learning helps or not. Figure 4.4 demon-

strates that QBU, QBUV, and QBC all outperform the random baseline in terms of total, per-word

accuracy on the Test set, given the same amount of Training data. Figure 4.5 is a close-up version

of Figure 4.4, placing emphasis on points up to 1000 annotated sentences. In these figures, QBU

and QBUV vie for the best performing active learning algorithm. These results appear to give some

useful advice captured in Table 4.1. The first column in the table contains the starting conditions.

The remaining columns indicate that for between 800–1600 sentences of annotation, QBUV takes

over from QBU as the best selection algorithm.

The next question to address is how much initial training data should be used; i.e., when

should we start using active learning? The experiment in Figure 4.6 demonstrates (using QBU)

that one should use as little data as possible for Initial Training Data. There is always a significant

advantage to starting early. In the experiment documented in this figure, a batch query size of one

was employed in order to make the point as clearly as possible. Larger batch query sizes produce

a graph with similar trends as do experiments involving larger Unannotated sets and other active

learners.
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Figure 4.3: Varying the size of the query batch in active learning yields identical results after the
first query batch.

Figure 4.4: The best representatives of each type of active learner beat the baseline. QBU and
QBUV trade off the top position over QBC and the Baseline.
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Figure 4.5: Close-up of the low end of the graph from Figure 4.4. QBUV and QBU are nearly tied
for best performance. this figure, a batch query size of one was employed in order to make the
point as clearly as possible. Larger batch query sizes produce a graph with similar trends as do
experiments involving larger Unannotated sets and other active learners.

Figure 4.6: Start active learning as early as possible for a head start.
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Figure 4.7: QBUV is superior to QBU overall, but QBU is better for very low counts. Both are
superior to the random baseline and the Longest Sentence (LS) baseline.

4.4.4 QBC Results

An important question to address for QBC is what number of committee members produces the

best results? There was no significant difference in results from the QBC experiments when using

between 3 and 7 committee members. For brevity we omit the graph.

4.4.5 QBU Results

For Query by Uncertainty, the experiment in Figure 4.7 demonstrates that QBU is superior to QBUV

for low counts, but that QBUV slightly overtakes QBU beyond approximately 300 sentences. In

fact, all QBU variants, including the weighted version, surpassed the baseline. WQBU has been

omitted from the graph, as it was inferior to straight-forward QBU.

4.4.6 Results on the BNC

Next we introduce results on poetry from the British National Corpus. Recall that the feature set

employed by the MEMM tagger was optimized for performance on the Wall Street Journal. For the

experiment presented in Figure 4.8, all data in the Training and Unannotated sets is from the BNC,

but we employ the same feature set from the WSJ experiments. This result on the BNC data shows
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Figure 4.8: Active learning results on the BNC poetry data. Accuracy of QBUV, QBU, and QBC
against the random baseline. QBU and QBUV are nearly indistinguishable.

first of all that tagging poetry with this tagger leaves a final shortfall of approximately 8% from the

WSJ results. Nonetheless and more importantly, the active learning trends observed on the WSJ still

hold. QBC is better than the baseline, and QBU and QBUV trade off for first place. Furthermore,

for low numbers of sentences, it is overwhelmingly to one’s advantage to employ active learning for

annotation.

4.4.7 Another Perspective

Next, briefly consider a different metric on the vertical axis. In Figure 4.9, the metric is the total

number of words changed (corrected) by the oracle. This quantity reflects the cumulative number of

differences between the tagger’s hypothesis on a sentence (at the point in time when the oracle is

queried) and the oracle’s answer (over the training set). It corresponds roughly to the amount of

time that would be required for a human annotator to correct the tags suggested by the model. This

figure reveals that QBUV makes significantly more changes than QBU, QBC, or LS (the Longest

Sentence baseline). Hence, the superiority of QBU over QBUV, as measured by this metric, appears

to outweigh the small wins provided by QBUV when measured by accuracy alone. That said, the

random baseline makes the fewest changes of all. If this metric (and not some combination with

accuracy) were our only consideration, then active learning would appear not to serve our needs.
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Figure 4.9: Cumulative number of corrections made by the oracle for several competitive active
learning algorithms. QBU requires fewer corrections than QBUV.

This metric is also a measure of how well a particular query algorithm selects sentences that

especially require assistance from the oracle. In this sense, QBUV appears most effective.

4.5 Conclusions

Active learning is a viable way to accelerate the efficiency of a human annotator and is most effective

when done as early as possible. We have presented state-of-the-art tagging results using a fraction

of the labeled data. QBUV is a cheap approach to performing active learning, only to be surpassed

by QBU when labeling small numbers of sentences. We are in the midst of conducting a user study

to assess the true costs of annotating a sentence at a time or a word at a time. We plan to incorporate

these specific costs into a model of cost measured in time (or money) that will supplant the metrics

reported here, namely accuracy and number of words corrected. As noted earlier, future work will

also evaluate active learning at the granularity of a word or a subsequence of words, to be evaluated

by the cost metric.
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4.6 Errata

This chapter corrects two errors in the references section of the published version of this paper.

First, the reference to Raiffa and Schlaifer [69] now has the correct year. Second, there were two

citations to Roy and McCallum [75] with different titles; we have retained only the correct citation.
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Chapter 5

Assessing the Costs of Machine-Assisted Corpus Annotation Through a User Study†

Abstract

Fixed, limited budgets often constrain the amount of expert annotation that can go into the con-

struction of annotated corpora. Estimating the cost of annotation is the first step toward using

annotation resources wisely. We present here a study of the cost of annotation. This study includes

the participation of annotators at various skill levels and with varying backgrounds. Conducted

over the web, the study consists of tests that simulate machine-assisted pre-annotation, requiring

correction by the annotator rather than annotation from scratch. The study also includes tests

representative of an annotation scenario involving Active Learning as it progresses from a naı̈ve

model to a knowledgeable model; in particular, annotators encounter pre-annotation of varying

degrees of accuracy. The annotation interface lists tags considered likely by the annotation model

in preference to other tags. We present the experimental parameters of the study and report both

descriptive and inferential statistics on the results of the study. We conclude with a model for

estimating the hourly cost of annotation for annotators of various skill levels. We also present

models for two granularities of annotation: sentence at a time and word at a time.
†Eric Ringger, Marc Carmen, Robbie Haertel, Kevin Seppi, Deryle Londsale, Peter McClanahan, James Carroll, and

Noel Ellison. Assessing the costs of machine-assisted corpus annotation through a user study. In Proceedings of the

International Conference on Language Resources and Evaluation, 2008.
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5.1 Introduction

In the construction of annotated corpora, we are constrained by fixed budgets for expert annotation.

Although a fully annotated corpus is required, we can afford only to label a subset. Obtaining human

annotations for linguistic data is labor-intensive and typically the costliest part of the acquisition of

an annotated corpus. Hence, there is strong motivation to reduce annotation costs, but not at the

expense of quality.

The current work focuses on part-of-speech tagging, although other annotation tasks can

also benefit from the techniques discussed. In addition to a labeled corpus, we also aim to produce a

probabilistic tagger that can accurately tag future texts. The annotation environment incorporates

the probabilistic tagger in order to facilitate the annotation process: annotators are able to focus on

correcting the tough cases missed by the automatic tagger while avoiding work on the cases tagged

correctly in the pre-annotation. Future work will evaluate the comparative merits of annotation from

scratch versus correction of pre-tagged text. In this work, a probabilistic part-of-speech tagger is

incrementally trained from the labeled subset of a given corpus and employed to tag automatically

the remainder of the corpus.

One important question that naturally arises in this setting of machine-assisted annotation is

how to best focus the attention and expertise of the human annotator(s). One aspect of this question

is: on which instances in the data should the annotators focus? This is the question addressed by

active learning. Active Learning (AL) can be employed to reduce the costs of corpus annotation

[27, 73, 91]. Our previous work [73] demonstrates that by applying active learning techniques, a

state of the art tagging model can be trained on as little as one-half of the amount of data required

by more traditional, less strategic annotation schemes to achieve the same levels of accuracy. With

the assistance of AL, the role of the human oracle is either to label a datum of interest or simply to

correct the label choice of an automatic labeler. AL directs an annotator’s attention to those data

which are likely to be maximally informative according to a given tagging model. In AL, the learner

leverages newly provided annotations to select more informative sentences and to provide more

accurate annotations in future iterations. Ideally, this process yields accurate labels with less human
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annotation. Several heuristic AL methods have been investigated for determining which data will

provide the most information and hopefully the best accuracy. Perhaps the best known are Query by

Committee (QBC) [82] and Uncertainty Sampling (or Query by Uncertainty, QBU) [87].

A second aspect of the focus question is: at which granularity should the annotators direct

their efforts? This paper focuses on this particular aspect and describes a user study designed

specifically to assess the true cost of labeling a whole sentence or just a word at a time. Annotation

cost is project-dependent. For instance, annotators may be paid by the hour or for the number of

annotations they produce (measured in words or sentences). With few exceptions, much of the

previous work on AL has largely ignored the question of cost estimation. One exception is Ngai and

Yarowsky [61] who compare the cost of manual rule-writing with annotation using AL for noun

phrase chunking.

In our previous work [73], we assumed that the unit of annotation was a sentence. The

assumption was based on a priori consideration of the nature of human input as an oracle for the

POS tagging task. We reasoned that people gather contextual cues from a sentence in order to

assemble the meaning of the whole. Consequently, we began with the assumption that a human

annotator will usually require significant context from the sentence in order to label a single word

with its POS label. We also reasoned that while focusing on a single word, the human may as

well label (or correct the labels on) the entire sentence. The user study reported here questions the

sentential assumption and tests its effectiveness against the word-at-a-time alternative.

In the following sections, we describe the experimental design of the study, the methods

for data selection, the implementation of the web-based study itself, the user pool, and a statistical

summary of the data produced by the study. The results allow us to make recommendations for the

granularity of annotation and provide guidance for a model of the true hourly cost of annotation.
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5.2 Experimental Design

5.2.1 Conditions

To address the question about the granularity of annotation, we construct an experiment designed to

assess the cost of two alternatives: we ask users of a web-browser based interface to correct parts of

speech on entire sentences and, separately, to correct the part of speech of individual words. For

data annotation, time is money, so our measure of cost is the time required to annotate.

The reason for correction instead of de novo annotation is that in a machine-assisted

annotation framework, we have access to labels from the statistical tagger. In this work we assume

that machine assistance is always of some value, thus we do not test the case where words are

tagged without assistance from the statistical tagger. Testing this assumption is the subject of future

work.

For the second condition, correcting the tag on a single word, tags on neighboring words

are hidden to avoid time wasted due to the distractions offered by tags on those neighboring words.

We wish to avoid the potential cognitive load incurred on an annotator by the puzzlement related to

seeing incorrect tags on words that cannot be corrected.

5.2.2 Control Variables

Our experiment includes two control variables. The first control variable is the accuracy of the

tagger producing the tags to be corrected by the annotator. This variable allows us to determine the

impact of tagger accuracy at various stages during the annotation process. In particular, for this first

control variable, we employ statistical taggers of known error rates (created using a development

corpus with known tags). Our study included tests using probabilistic taggers with accuracies: 50%,

75%, and 95%. This progression of increasing accuracy is typical in the process of active learning;

hence, the data sheds some light on the time required to annotate in such circumstances. For tagging,

we employed a probabilistic tagger, namely a Maximum Entropy Conditional Markov Model tagger
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[71, 92, 93]. Such taggers are referred to alternatively in the literature as MaxEnt CMMs, MEMMs,

or simply “MaxEnt” taggers.

The second control variable is the sentence length. Sentence length is discretized into three

ranges: 1–15 words, 16–21 words, and 22–29 words. By selecting data for the study belonging to

these three ranges, we are able to assess the impact of sentence length on the final cost.

5.2.3 Session Size

For the two conditions (entire sentences and word-at-a-time), three values of the first controlled

variable (tagger accuracy), and three values of the second (discretized sentence length), we have

eighteen different types of cases. Furthermore, we reasoned that each user should provide input

on at least two examples of each of the eighteen case types. Consequently, in addition to practice

and control sentences (4 each), each user responds to 36 cases, for a total of 44. As for the order

of presentation, we decided to alternate between cases for each condition, beginning with a whole

sentence annotation case, followed by a single word annotation case. The order of presentation was

otherwise randomized without respect to the two control variables.

5.2.4 Data Selection

The study employs English prose from the Wall Street Journal portion of the Penn Treebank. This

data set is well known, and the quality and shortcomings of its annotations are well understood.

Intuitively, data annotated by a more accurate model will require that fewer tags be corrected, thus

requiring less annotation time. Similarly, longer sentences will be more costly than shorter sentences

in general. As noted above, we determined that annotators could tag 36 cases, not including practice

and control cases, in a reasonable amount of time. We estimated that we would be able to obtain

data from a minimum of 25–30 annotators. We thus decided to produce 14 non-overlapping sets

of 36 unique cases. From these, we produced 28 total “templates”: each of the 14 sets are used

in one template to be annotated word-at-a-time and in a second template as sentence-at-a-time.

Consequently, the same cases are guaranteed to be annotated using both methods. Once more than
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Table 5.1: Accuracy figures for the three models used to select sentences.

Model Tag Accuracy Unknown Word Tag Accuracy Sentence Tag Accuracy
Tag50 54.3% 47.1% 0.4%
Tag75 75.1% 65.6% 1.5%
Tag95 95.3% 86.9% 36.9%

28 users had participated in the study, templates were re-used. We control for model accuracy by

training three MaxEnt POS taggers of differing quality in an iterative fashion as follows. After the

available training data (sections 2–21 of the Penn Treebank) was randomly ordered, a small batch of

sentences was added to the (initially empty) annotated set, the model was retrained, and its accuracy

on a held out set (section 24 of the PTB) was computed.

This process was repeated until the desired accuracy was achieved and the resulting model

was saved. This was done for each of three desired accuracy levels: 50% (Tag50), 75% (Tag75),

and 95% (Tag95); the actual accuracies obtained are shown in Table 5.1.

In order to control for length, we fit a log-normal distribution to the lengths of the sentences

in the training data. The 25th, 50th, and 75th percentiles were used to create three distinct length

buckets of [1, 15], [16, 21], and [22, 30] words, respectively. We excluded sentences having more

than 30 words. We considered it better to present to the annotators a larger number of sentences in

the time allotted to annotators than to have annotations on extremely long sentences.

The sentences in these length buckets are further divided into six equal parts in order to

control for the other factors: two buckets (one for sentence at a time and one for word at a time

annotation) for each of the three trained models (tag50, tag75 and tag90). The model with the

appropriate accuracy was used to sort the sentences within each of the 18 buckets using the model

corresponding to the bucket, and the first 28 sentences in each bucket were set aside. To ensure that

a single template did not consist of all of the hardest sentences or words, we independently shuffled

the 28 remaining sentences in each of the buckets. A template was created by taking two sentences

from each of the 18 buckets; half of them are presented the same way they were chosen (i.e., to be

annotated as a full sentence if chosen using the sentence-at-a-time algorithm), and the other half

were presented using the word-at-a-time method.
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Figure 5.1: Web interface for the correction of tags for an entire sentence.

5.2.5 User Interface

The web study was implemented as a PHP application, and all session templates and results were

encoded in XML. On the matter of how to present the cases to the user, we settled on the use of

radio buttons for the top three tags with a drop-down for the other options. The top three tags are

the three most likely correct tags as determined by the probabilistic tagger. The order of the tags in

the drop-down list is static so that users do not have to “hunt” for the location of the desired tag.

Figures 5.1 and 5.2 illustrate with screenshots of the interface for the annotation of sentences and

words, respectively.
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Figure 5.2: Web interface for the correction of tags for an individual word in sentential context.
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5.2.6 Subjects

The majority of the subjects for this study were undergraduate linguistics students in their third week

of an undergraduate syntax course. They had received a general review of phrase types and word

classes. The students received no special training in part of speech tagging, the tag set employed

in the Penn Treebank, or even linguistic experimentation. The assignment was optional, and the

equivalent value of a small homework assignment was awarded upon completion of the study. They

were also rewarded for enrolling up to two additional people in the study. Ten of the 47 students

were non-native speakers of English, and four of the 47 had participated in an earlier round of the

study. When subjects finished the study they were given a brief survey in which they were asked

several questions related to their ability and their performance in the study, as described in greater

detail below.

5.3 Descriptive Statistics

We present the results of this study in two parts: first we introduce the data gathered and present

descriptive statistics. Second, we model the data and draw conclusions using inferential statistics.

The web-based annotation tool described in the preceding sections gathered the following data

during the annotation study:

Length The number of tokens in the sentence; when annotating a single word it is the length of the

sentence in which the word appears

Time The time in seconds that the subject spent on the current case

Subject Accuracy The percentage of tokens correctly tagged by the subject. When annotating a

single word this is either 0% or 100%

Location Index of the current case in the session

Tagger Accuracy The percentage of words correctly tagged by the automatic tagger in the sentence.

When annotating a single word this is either 0% or 100%
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Table 5.2: Statistics for Sentence-at-a-time and word-at-a-time annotation.

Label Sentence Word
Mean Std Dev Median Min Max Mean Std Dev Median Min Max

Length 19.86 5.74 20 4 30 19.85 5.77 20 4 30
Time (Seconds) 137.02 141.69 97.69 0.02 1448.67 19.4 21.92 14.09 0.14 299.23
Subject Accuracy 78.37 16.18 80.95 5 100 69.92 45.88 100 0 100
Location 22.91 12.66 23 1 50 22.42 12.93 22 2 49
Tagger Accuracy 63.68 22.86 65 5 100 32.21 46.75 0 0 100
Number Needing Correction 7.21 5.07 7 0 23 7.35 5.04 7 0 23
Percent Done 51.7 28.54 52.27 2 100 50.63 29.17 50 4 98
Conditional Entropy 30.51 16.81 31.09 3.74 75.23 30.64 16.83 31.09 3.74 75.23
From Tagger 73.74 16.68 75 50 95 73.62 16.66 75 50 95
Native English Speaker 0.79 0.41 1 0 1 0.79 0.41 1 0 1
Previously Participated in Study 0.09 0.29 0 0 1 0.09 0.28 0 0 1
Self Evaluation Tagging Proficiency 2.11 0.72 2 1 3 2.1 0.72 2 1 3
Self Evaluation of Performance in
Study 2.77 0.83 3 1 5 2.76 0.83 3 1 5

Time per Tag 6.98 7.01 5.09 0 68.98 19.4 21.92 14.09 0.14 299.23

Number Needing Correction The number of words in the case needing correction

Percent Done Percentage of the cases assigned to the current subject already encountered

Conditional Entropy For whole sentence annotation, an estimate of the total tag sequence entropy

given the words in the current sentence. For single word annotation, the entropy of the tag

distribution for the current word.

From Tagger The accuracy (50, 75, or 95) of the tagger providing the candidate tags

Native English Speaker A 0/1 indicator of whether the subject is a native English speaker

Previously Participated in Study A 0/1 indicator of whether the subject was part of a previous

(similar) tagging exercise

Self Evaluation Tagging Proficiency A 1/2/3/4/5 indicator of the subject self-evaluation of tag-

ging proficiency

Self Evaluation of Performance in Study A 1/2/3/4/5 indicator of the subject self-evaluation of

tagging accuracy in this study

Descriptive statistics on these attributes are shown in Table 5.2. The final row in the table

measures the time required per tag. For the word-at-a-time case, this is just the value of the Time

variable above. For the sentence-at-a-time case, the time per tag is the ratio of the time per sentence

by the length of the sentence.
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5.4 Hourly Cost Models

We are interested primarily in linear models predictive of the time required for annotation/correction

tasks. Based on the data from the annotation user study, we derive such models. We will refer to

these models as “hourly cost models.” First we focus only on the data annotated/corrected one

sentence at a time. There were 1046 annotated sentences in the data from the user study. We

discarded extreme outliers having time less than or equal to five seconds or greater than or equal to

1000 seconds. Such outliers are probably best explained by the failure of a subject to use the “pause”

button in the web interface or by negligent speeding through the study. This left 906 sentences. The

hourly cost model computed on that data by means of linear regression is as follows:

h =
3.795 · l +5.387 · c+12.57

3600

where h is the time in hours spent on the sentence, l is the number of tokens in the sentence, and

c is the number of words in the sentence needing correction. The model uses only a small subset

of the raw statistics available in the annotation study for two reasons: first, some variables (e.g.,

proficiency assessment) are not included because we explicitly wish to assume that tagging will

be conducted by a mix of people with tagging skills similar to the mix of skills tested in the user

study. Second, some variables fail to have a statistically meaningful effect on the resultant model.

We employed the Bayesian Information Criterion (as implemented in the LEAPS package in R) to

assess which of the variables listed in Section 5.3 should be included in the model. For this model,

the Residual Standard Error (RSE) is 89.5, and the adjusted correlation (R2) is 0.181.

The model has an intuitive interpretation: the annotator considers each word and decides

whether or not it needs to be corrected (3.795 seconds per word); only words needing correction

are changed (5.387 seconds per correction). Additionally, there is 12.57 seconds of overhead per

sentence. In contrast to the model presented in Ngai and Yarowsky [61] which predicts monetary

cost given time spent, this model estimates time spent from characteristics of a sentence. Many of
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the costs employed in other work [42, 63] can be seen as estimating only some portion of the hourly

cost. These distinctions make our work a novel contribution.

This model reflects the abilities of the annotators in the study may not be representative of

expert annotators hired for other annotation work. A better model, linear or otherwise, based on

data from other annotators could be employed, but the methodology employed in this study could

be applied directly.

We also found the following relationships. Interestingly, participation by non-native speakers

of English did not appear to affect accuracy but does affect completion time. As noted above, each

subject was asked to rate his proficiency in tagging; self evaluation is statistically significant in

relationship to the subject’s accuracy. Also, a subject’s self evaluation and correction accuracy

are correlated. Whether or not a subject had participated in a similar previous experiment had no

statistically significant impact on subject accuracy or on time to completion. “Conditional entropy”

of the tag sequence distribution given the words has a negative effect on the subject’s accuracy: as

entropy increases, subject accuracy decreases.

We have also entertained other questions regarding the sentence-at-a-time data. If we

consider only the self-rated experts in the data set, in other words if we examine only the data from

subjects whose proficiency rating is 3, then we are limited to 300 sentences in the data. We apply

the same linear regression techniques, and the resulting hourly model is:

h =
4.261 · l +4.683 · c�5.579

3600

As before, l = length, and c = the number of tokens needing correction. For this model, the RSE is

76.57, and the adjusted R2 is 0.2345.

If we consider only the beginners (self rating is 2 or lower), then we are limited to 606

sentences in the data. The resulting model is:

h =
3.441 · l +3.441 · c+20.752

3600
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For this model, the RSE is 94.98, and the adjusted R2 is 0.1622.

Next, we analyze the sentences having high annotation accuracy. The number of sentences

having an annotation accuracy of at least 95% (annotations come from the user study subjects) is

111. The linear model on this subset of the data is:

h =
0.711 · l +5.174 · c+47.876

3600

For this model, the RSE is 76.64, and the adjusted R2 is 0.1109.

For the word-at-a-time data, there were 1035 cases of annotated words. We discarded

extreme outliers having time less than or equal to one second or greater than or equal to 200 seconds.

This left 915 sentences. The hourly cost model computed on the word-at-a-time data by means of

linear regression is as follows:

h =
14.193+5.670 ·b

3600

where b is a binary indicator reflecting whether or not the word in question actually needed

correction. As before, this model was preferred by the Bayesian Information Criterion. For this

model, the RSE was 15.76, and the adjusted R2 is 0.0256. The next best model according to BIC

included the length of the sentence in which the word occurred, as in the sentence-at-a-time model.

Intuitively, length may play a small role, for instance, affecting the time to scan for and find the word

to be tagged; also, in longer sentences larger context may be needed by the subject to disambiguate

more distant co-reference.

5.5 Future Work

Based on this analysis, we have simple linear models with which to predict the time required to

annotate data using each presentation technique, whether sentence-at-a-time or word-at-a-time.

Our future work focuses on the application of these results in the context of active learning. Our

previous work demonstrates that by applying active learning techniques, a state of the art tagging

model can be trained on as little as one-half of the amount of data required by more traditional
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machine-assisted annotation schemes to achieve the same levels of accuracy. These results assumed

that cost was measured in terms of the number of sentences annotated. We will also evaluate the cost

of annotation with the new models and assess overall cost reductions in terms of time and therefore

money. It is ultimately expenditures of money that are limited by our project budgets. We also plan

to apply the models of annotation cost derived here in the current work to select the presentation

style for annotation. By adaptively presenting cases one word-at-a-time or one sentence-at-a-time,

we expect to be able to further minimize annotation time and, therefore, cost.

5.6 Addendum

The careful reader will have noticed relatively low R2 values for the various linear models (as noted

by the RSE). We note that intra-annotator variance tends to be high for non-trivial annotation tasks

(c.f. [81]). This is especially the case in this study which includes non-native English speakers and,

more generally, a wide array of skills. Concerning the per-word model, there is high variance across

words, also evidenced by the RSE. Finally, we note the R2 values for the sentence-at-a-time models

are on par with that reported by Settles et al. [81] for his CKB task for the model pooled across all

annotators (though individual annotators are much more predictable).
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Chapter 6

Assessing the Costs of Sampling Methods in Active Learning for Annotation†

Abstract

Traditional Active Learning (AL) techniques assume that the annotation of each datum costs the

same. This is not the case when annotating sequences; some sequences will take longer than others.

We show that the AL technique which performs best depends on how cost is measured. Applying

an hourly cost model based on the results of an annotation user study, we approximate the amount

of time necessary to annotate a given sentence. This model allows us to evaluate the effectiveness

of AL sampling methods in terms of time spent in annotation. We achieve a 77% reduction in hours

from a random baseline to achieve 96.5% tag accuracy on the Penn Treebank. More significantly,

we make the case for measuring cost in assessing AL methods.

6.1 Introduction

Obtaining human annotations for linguistic data is labor intensive and typically the costliest part

of the acquisition of an annotated corpus. Hence, there is strong motivation to reduce annotation

costs, but not at the expense of quality. Active learning (AL) can be employed to reduce the costs of

corpus annotation [27, 73, 91]. With the assistance of AL, the role of the human oracle is either

to label a datum or simply to correct the label from an automatic labeler. For the present work,

we assume that correction is less costly than annotation from scratch; testing this assumption is
†Robbie Haertel, Eric Ringger, Kevin Seppi, James Carroll, and Peter McClanahan. Assessing the costs of

sampling methods in active learning for annotation. In Proceedings of the 46th Annual Meeting of the Association of

Computational Linguistics, Columbus, OH, USA, June 2008.
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the subject of future work. In AL, the learner leverages newly provided annotations to select more

informative sentences which in turn can be used by the automatic labeler to provide more accurate

annotations in future iterations. Ideally, this process yields accurate labels with less human effort.

Annotation cost is project dependent. For instance, annotators may be paid for the number of

annotations they produce or by the hour. In the context of parse tree annotation, Hwa [43] estimates

cost using the number of constituents needing labeling and Osborne and Baldridge [63] use a

measure related to the number of possible parses. With few exceptions, previous work on AL has

largely ignored the question of actual labeling time. One exception is [61] (discussed later) which

compares the cost of manual rule writing with AL-based annotation for noun phrase chunking. In

contrast, we focus on the performance of AL algorithms using different estimates of cost (including

time) for part of speech (POS) tagging, although the results are applicable to AL for sequential

labeling in general. We make the case for measuring cost in assessing AL methods by showing that

the choice of a cost function significantly affects the choice of AL algorithm.

6.2 Benefit and Cost in Active Learning

Every annotation task begins with a set of un-annotated items U . The ordered set A ✓U consists

of all annotated data after annotation is complete or after available financial resources (or time) have

been exhausted. We expand the goal of AL to produce the annotated set ˆA such that the benefit

gained is maximized and cost is minimized.

In the case of POS tagging, tag accuracy is usually used as the measure of benefit. Several

heuristic AL methods have been investigated for determining which data will provide the most

information and hopefully the best accuracy. Perhaps the best known are Query by Committee

(QBC) [82] and uncertainty sampling (or Query by Uncertainty, QBU) [87]. Unfortunately, AL

algorithms such as these ignore the cost term of the maximization problem and thus assume a

uniform cost of annotating each item. In this case, the ordering of annotated data A will depend

entirely on the algorithm’s estimate of the expected benefit.
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Figure 6.1: QBU, LS, QBC, and the random baseline plotted in terms of accuracy versus various
cost functions: (a) number of sentences annotated; (b) number of words annotated; and (c) number
of tags corrected.

However, for AL in POS tagging, the cost term may not be uniform. If annotators are

required to change only those automatically generated tags that are incorrect, and depending on

how annotators are paid, the cost of tagging one sentence can depend greatly on what is known

from sentences already annotated. Thus, in POS tagging both the benefit (increase in accuracy) and

cost of annotating a sentence depend not only on properties of the sentence but also on the order in

which the items are annotated.

Therefore, when evaluating the performance of an AL technique, cost should be taken into

account. To illustrate this, consider some basic AL algorithms evaluated using several simple cost

metrics. The results are presented against a random baseline which selects sentences at random;

the learning curves represent the average of five runs starting from a random initial sentence. If

annotators are paid by the sentence, Figure 6.1a presents a learning curve indicating that the AL

policy that selects the longest sentence (LS) performs rather well. Figure 6.1a also shows that given

this cost model, QBU and QBC are essentially tied, with QBU enjoying a slight advantage. This

indicates that if annotators are paid by the sentence, QBU is the best solution, and LS is a reasonable

alternative. Next, Figure 6.1b illustrates that the results differ substantially if annotators are paid by

the word. In this case, using LS as an AL policy is worse than random selection. Furthermore, QBC

outperforms QBU. Finally, Figure 6.1c shows what happens if annotators are paid by the number of

word labels corrected. Notice that in this case, the random selector marginally outperforms the other
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techniques. This is because QBU, QBC, and LS tend to select data that require many corrections.

Considered together, Figures 6.1a-Figure 6.1c show the significant impact of choosing a cost model

on the relative performance of AL algorithms. This leads us to conclude that AL techniques should

be evaluated and compared with respect to a specific cost function.

While not all of these cost functions are necessarily used in real-life annotation, each can

be regarded as an important component of a cost model of payment by the hour. Since each of

these functions depends on factors having a significant effect on the perceived performance of the

various AL algorithms, it is important to combine them in a way that will accurately reflect the true

performance of the selection algorithms.

In prior work, we describe such a cost model for POS annotation on the basis of the time

required for annotation [74]. We refer to this model as the “hourly cost model”. This model is

computed from data obtained from a user study involving a POS annotation task. In the study,

timing information was gathered from many subjects who annotated both sentences and individual

words. This study included tests in which words were pre-labeled with a candidate labeling obtained

from an automatic tagger (with a known error rate) as would occur in the context of AL. Linear

regression on the study data yielded a model of POS annotation cost:

h = (3.795 · l +5.387 · c+12.57)/3600 (6.1)

where h is the time in hours spent on the sentence, l is the number of tokens in the sentence, and c is

the number of words in the sentence needing correction. For this model, the Relative Standard Error

(RSE) is 89.5, and the adjusted correlation (R2) is 0.181. This model reflects the abilities of the

annotators in the study and may not be representative of annotators in other projects. However, the

purpose of this paper is to create a framework for accounting for cost in AL algorithms. In contrast

to the model presented by Ngai and Yarowsky [61], which predicts monetary cost given time spent,

this model estimates time spent from characteristics of a sentence.
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6.3 Evaluation Methodology and Results

Our test data consists of English prose from the POS-tagged Wall Street Journal text in the Penn

Treebank (PTB) version 3. We use sections 2–21 as initially unannotated data. We employ section

24 as the development test set on which tag accuracy is computed at the end of every iteration of

AL.

For tagging, we employ an order two Maximum Entropy Markov Model (MEMM). For

decoding, we found that a beam of size five sped up the decoder with almost no degradation in

accuracy from Viterbi. The features used in this work are typical for modern MEMM POS tagging

and are mostly based on work by Toutanova and Manning [92].

In our implementation, QBU employs a single MEMM tagger. We approximate the entropy

of the per-sentence tag sequences by summing over per-word entropy and have found that this

approximation provides equivalent performance to the exact sequence entropy. We also consider

another selection algorithm introduced in [73] that eliminates the overhead of entropy computations

altogether by estimating per-sentence uncertainty with 1�P(t̂), where t̂ is the Viterbi (best) tag

sequence. We label this scheme QBUOMM (OMM = “One Minus Max”).

Our implementation of QBC employs a committee of three MEMM taggers to balance

computational cost and diversity, following Tomanek et al. [91]. Each committee member’s training

set is a random bootstrap sample of the available annotated data, but is otherwise as described above

for QBU. We follow Engelson and Dagan [27] in the implementation of vote entropy for sentence

selection using these models.

When comparing the relative performance of AL algorithms, learning curves can be chal-

lenging to interpret. As curves proceed to the right, they can approach one another so closely that it

may be difficult to see the advantage of one curve over another. For this reason, we introduce the

“cost reduction curve”. In such a curve, the accuracy is the independent variable. We then compute

the percent reduction in cost (e.g., number of words or hours) over the cost of the random baseline
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for the same accuracy a:

redux(a) = (costrnd(a)� cost(a))/costrnd(a)

Consequently, the random baseline represents the trajectory redux(a) = 0.0. Algorithms less costly

than the baseline appear above the baseline. For a specific accuracy value on a learning curve,

the corresponding value of the cost on the random baseline is estimated by interpolation between

neighboring points on the baseline. Using hourly cost, Figure 6.2 shows the cost reduction curves

of several AL algorithms, including those already considered in the learning curves of Figure 6.1

(except LS). Restricting the discussion to the random baseline, QBC, and QBU: for low accuracies,

random selection is the cheapest according to hourly cost; QBU begins to be cost-effective at around

91%; and QBC begins to outperform the baseline and QBU around 80%.

6.4 Normalized Methods

One approach to convert existing AL algorithms into cost-conscious algorithms is to normalize the

results of the original algorithm by the estimated cost. It should be somewhat obvious that many

selection algorithms are inherently length-biased for sequence labeling tasks. For instance, since

QBU is the sum of entropy over all words, longer sentences will tend to have higher uncertainty.

The easiest solution is to normalize by sentence length, as has been done previously [27, 91]. This

of course assumes that annotators are paid by the word, which may or may not be true. Nevertheless,

this approach can be justified by the hourly cost model. Replacing the number of words needing

correction, c, with the product of l (the sentence length) and the accuracy p of the model, equation

6.1 can be re-written as the estimate:

ĥ = ((3.795+5.387p) · l +12.57)/3600

Within a single iteration of AL, p is constant, so the cost is approximately proportional to the length

of the sentence. Figure 6.2 shows that normalized AL algorithms (suffixed with “/N”) generally
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Figure 6.2: Cost reduction curves for QBU, QBC, QBUOMM, their normalized variants, and the
random baseline on the basis of hourly cost

outperform the standard algorithms based on hourly cost (in contrast to the cost models used in

Figures 6.1a - (c)). All algorithms shown have significant cost savings over the random baseline

for accuracy levels above 92%. Furthermore, all algorithms except QBU depict trends of further

increasing the advantage after 95%. According to the hourly cost model, QBUOMM/N has an

advantage over all other algorithms for accuracies over 91%, achieving a significant 77% reduction

in cost at 96.5% accuracy.

6.5 Conclusions

We have shown that annotation cost affects the assessment of AL algorithms used in POS annotation

and advocate the use of a cost estimate that best estimates the true cost. For this reason, we employed

an hourly cost model to evaluate AL algorithms for POS annotation. We have also introduced the

cost reduction plot in order to assess the cost savings provided by AL. Furthermore, inspired by the

notion of cost, we evaluated normalized variants of well-known AL algorithms and showed that

these variants out-perform the standard versions with respect to the proposed hourly cost measure.

In future work we will build better cost-conscious AL algorithms.
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Chapter 7

Return on Investment for Active Learning†

Abstract

Active Learning (AL) can be defined as a selectively supervised learning protocol intended to

present those data to an oracle for labeling which will be most enlightening for machine learning.

While AL traditionally accounts for the value of the information obtained, it often ignores the cost

of obtaining the information thus causing it to perform sub-optimally with respect to total cost.

We present a framework for AL that accounts for this cost and discuss optimality and tractability

in this framework. Using this framework we motivate Return On Investment (ROI), a practical,

cost-sensitive heuristic that can be used to convert existing algorithms into cost-conscious active

learners. We demonstrate the validity of ROI in a simulated AL part-of-speech tagging task on

the Penn Treebank in which ROI achieves as high as a 73% reduction in hourly cost over random

selection.

7.1 Introduction

Labeled data is a prerequisite for many algorithms in Natural Language Processing (NLP) and

machine learning. While large amounts of annotated data are available for well-studied languages

in well-studied domains and for well-studied problems such as part-of-speech (POS) tagging, this is

not true for less common languages or domains. Unfortunately, obtaining human annotations for

linguistic data is labor intensive and typically the costliest part of the acquisition of an annotated
†Robbie A. Haertel, Kevin D. Seppi, Eric K. Ringger, and James L. Carroll. Return on investment for active learning.

In Proceedings of the Neural Information Processing Systems Workshop on Cost Sensitive Learning, 2008.
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corpus; a great deal of funding continues to be devoted to the annotation of data. Hence, there

should be substantial interest in reducing annotation costs while preserving quality.

Active Learning (AL) can be employed to reduce the costs of corpus annotation [27, 73, 91].

The primary responsibility of the active learner has been to choose items for which it believes the

true annotations will provide the most benefit. However, cost must also be considered [8, 34], and

AL should deliver annotations that balance cost and utility.

In this paper, we present AL as an order optimization and decision problem and discuss

the optimal approach to AL based on decision theory. We motivate the need for this approach

to be based on the “net utility” (NU), which incorporates both the utility and cost of annotating

an entire sequence of items. However, due to the intractability of the optimal approach, greedy

approaches and heuristics must be used. We present a practical, novel heuristic that combines utility

and cost in a measure called Return On Investment (ROI). We apply this cost-sensitive perspective

and demonstrate the advantage of this technique over traditional AL methods in a simulated AL

part-of-speech tagging task on the Penn Treebank.

The rest of the paper will proceed as follows: Section 7.2 discusses the role of both benefit

and cost in AL. Section 7.3 provides a framework for AL which we use to discuss previous work

and motivate our approach, ROI, which is subsequently introduced in Section 7.4. We explain our

methodology for conducting experiments in Section 7.5, and results are presented in Section 7.6.

Finally, Section 7.7 discusses conclusions and indicates our plans for future work.

7.2 The Role of Cost and Benefit

Pivotal to AL is the observation that not all data are created equal: some data are inherently more

beneficial than others. Key to this work is the fact that data also differ in how costly they are

to annotate. Although this is true for nearly all annotation tasks, it is particularly obvious when

annotating sequences or other structured objects, which are common in NLP and bioinformatics,

among other fields. Consider for example the manual POS tagging task. All else being equal, it

will clearly take more time, and hence cost more, to annotate longer sentences. On the other hand,
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sentences containing frequent words or features that provide discriminatory information tend to be

more valuable. An active learner should seek sentences that are most beneficial and least costly.

In order for an active learner to determine which data are “most beneficial” and “least costly,”

benefit (utility) and cost must be clearly defined. The exact determination of cost and utility are

typically project-dependent and sometimes difficult to measure. Nevertheless, the performance of

an AL algorithm is ultimately determined by both the true cost and utility, and hence, any attempt

to characterize the performance of the algorithm should measure both aspects as closely as possible.

There are many facets to utility, but in this work we focus on measures of model goodness,

in particular, accuracy. However, this may not capture all aspects of true utility. For example,

Baldridge and Osborne [6] have suggested that reusability of the annotated data can be important.

Similarly, the cost of an AL project depends on many variable and fixed costs [61], but how the

annotators will be paid is one of the most significant factors. The usual assumption for AL is

unit cost per label, which is unrealistic particularly for tasks involving labeling sequences or other

structured data. Becker et al. [8] and Haertel et al. [34] show how the relative performance of

different algorithms is determined in part by how cost is measured. Many of the costs employed in

other work (e.g., Hwa [43], Osborne and Baldridge [63]) can be seen as estimating some portion of

the hourly cost. The nature of the annotation user interface, the number and efficiency of annotators,

etc. are additional components of cost [14]. There is also a human learning curve that inevitably

impacts the cost of an AL system.

7.3 Background and Decision Theoretic Framework for Active Learning

Most work in AL assumes that a single unerring oracle provides annotations (however, this frame-

work can also be applied to cases when the annotator is fallible or there is more than one annotator).

AL is an order optimization problem [18]: a rational organization that desires to annotate a par-

ticular set of initially unannotated items U , will seek the totally ordered subset A ⇤ ✓ U such

that A ⇤ = argmaxA✓U NU(A ) where NU(A ) = utility(A )� cost(A ), and “utility” and “cost”
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(discussed in the previous section) are functions of an ordered set that must be on the same scale.

Furthermore, no rational organization would undertake a project if NU(A ⇤)< 0.

Decision theory provides a statistically optimal approach to finding A ⇤ with respect to

the utility and cost functions. The test selection problem consists of using the Expected Value of

Sampling Information (EVSI) [69] to choose which “test,” if any, could be performed that would

maximize the expected net utility (ENU). In AL, a “test” consists of requesting an annotation from

the oracle. Since each query to the oracle potentially affects the NU of future queries, it is necessary

to consider the NU of full sequences of tests/queries. Let A be the set of data with annotations and

U be the unannotated data. The optimal choice of item for annotation is:

x⇤ = argmax
x2U

EY=y|x,A [R(A [{(x,y)},U � x)] (7.1)

where Y is a r.v. representing the annotation for instance x and R is the maximum ENU:

R(A ,U ) = max
✓

max
x2U

EY=y|x,A [R(A [{(x,y)},U � x)] ,NU (A )

◆

which is computed by recursively choosing the next test instance that maximizes the ENU given the

updated A . R is at a maximum when future iterations are no longer expected to increase the value

of R or there is no data left to consider (in other words, R(A , /0) = NU(A )).

The optimal AL algorithm therefore is to choose an item x⇤ according to equation 7.1,

query the oracle for the annotation y, add the annotated pair (x,y) to A , and repeat until R is not

greater than the current NU. Note that although some have recognized their approach as greedy

(e.g., Schohn and Cohn [77]), Carroll et al. [15] and this work are the first to explicate the fully

optimal approach, as far as we are aware. Although computing expectations for every possible

permutation of unannotated items (performed by the recursive function R) at each stage of AL is

clearly intractable, knowing the optimal approach has guided the current work and should help

direct future work towards better approximations.
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Several authors have used a greedy version of EVSI-based AL in which no recursion is

necessary (e.g., Anderson and Moore [2], Cohn et al. [17], Kapoor et al. [46], Margineantu [58], Roy

and McCallum [75], Schohn and Cohn [77]). Even this greedy approach can be expensive, since

posterior probabilities must be computed for every possible labeling of every possible unannotated

item. Some gains in efficiency can be had using models that allow for efficient (albeit often

approximate) computation of posterior probabilities (e.g., Cohn et al. [17], Kapoor et al. [46]), and

it is also possible to consider a subset of possible tests and use sampling to compute ENU [75].

Even with such simplifications, the greedy approximation can be computationally costly

for many problems and models. Rather than computing posterior probabilities, heuristic methods

may be used which typically require training a manageable number of models on the previously

annotated data and using these models to rank the remaining items according to some criterion.

Most heuristics attempt to score instances in such a way that the scores are proportional to the

expected change in utility. The most common heuristics assume that this change is proportional

to some type of uncertainty. Let Y be the random variable representing a label assignment to the

test instance x. Then we refer to the uncertainty of the distribution of Y |x as ambiguity. However,

since the true distribution of Y |x is unknown, it is possible for the mode of any estimate to be

incorrect, leading to an incorrect classification. The distribution over possible modes of p(Y |x), i.e.,

p
�
Z = argmaxy p(Y = y|x)

�
(c.f. Dagan and Engelson [19]), represents a type of uncertainty we

call correctness.

Ambiguity and correctness can be quantified in several ways, including entropy. Although

entropy takes into account the mass or density across the entire support, the most important question

is whether or not the model is correct. A more direct measure is to use the probability that the

model is wrong, i.e., 1� p(mode) (One-Minus-Max; OMM) (c.f. Ringger et al. [73]). Another

interesting measure of uncertainty when using committee-based approaches is K-L divergence from

the mean [59]. This method measures the average distance (computed using K-L divergence) of

the distribution of each member of a committee to the mean distribution of the committee. This
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has the benefit that truly ambiguous distributions usually have low variance and hence are avoided.

Anderson and Moore [2] prove that using entropy and K-L divergence are in fact the same.

Approaches in which a single model assesses ambiguity are referred to as uncertainty

sampling [87] (also Query-By-Uncertainty; QBU). Monte Carlo techniques can be used to assess

both ambiguity and correctness; approaches for the latter are known as Query-By-Committee (QBC)

[27, 82].

7.4 Return on Investment

Optimizing ENU directly is difficult, even greedily. First, computing posterior probabilities and

therefore ENU can often be prohibitively costly. Assuming annotators are paid while waiting for

the active learner, long computation should result in lower NU. Lamentably, this has yet to be

properly accounted for. A second challenge to using NU is that, in practice, it tends to be difficult to

define cost and utility in the same units. Anderson and Moore [2] recognize that this is particularly

problematic for entropy-based utility functions. It is also especially true when it is not possible or

feasible to calculate the maximum EU of the unannotated data (the most prevalent utility function).

The fact that the majority of work on AL assesses performance using graphs of cost vs. utility rather

than number of queries vs. NU attests to this difficulty. Most AL work assumes constant cost (often

unjustifiably) in which case the graphs are scaled variants of each other. Even those approaches that

use more justifiable cost measures frequently measure performance on the basis of cost vs. utility

(e.g., Engelson and Dagan [27], Haertel et al. [34], Tomanek et al. [91]).

In the absence of a good conversion between units of cost and utility, the use of plots of cost

vs. utility is justified since they still encapsulate useful information. For instance, AL algorithms

that produce lines having greater area under them tend to correspond to algorithms with higher

maximum NUs. Furthermore, some algorithms tend to exhibit higher utility for nearly all levels of

cost when compared to other algorithms, which translates to higher NU in the same regions.

For this reason, it is desirable to employ algorithms that select items that maximize utility

per unit of cost, specifically in the case that it is not practical or even possible to compute ENU.
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A straightforward method of maximizing this quantity is through the use of Return on Investment

(ROI). ROI is defined as: ROI(x) = utility⇤(x)�cost⇤(x)
cost⇤(x) = utility⇤(x)

cost⇤(x) �1. When using ROI as a selection

metric, the learner ranks items by the ratio of an estimate of the utility of annotating each item to an

estimate of the cost to annotate it; the item that maximizes this quantity is selected for annotation.

Note that these estimates can be functions of any form, including non-linear and unbounded

functions. Conveniently, it is not necessary to compute the non-trivial conversion ratio required by

NU, yet, unlike the traditional heuristics such as QBU and QBC, ROI is clearly cost-sensitive. As

desired, ROI (greedily) maximizes utility per unit of cost. ROI selects items whose estimated slope

on a learning curve of cost vs. utility are at a maximum given the previous points, provided that

the cost and utility estimators used in ROI are the same (or similar) to those measured in the graph.

This generally leads to learning curves that tend toward the upper-left corner of the graph (lower

cost and higher utility), which is precisely what constitutes good AL algorithms.

7.5 Methodology

In the remainder of this work, we consider several AL selection algorithms that leverage the idea of

ROI for the POS tagging task. As previously defined, these algorithms consist of two parts: a utility

estimator and a cost estimator. By combining different cost and utility estimators in the ROI model

introduced above, we create novel selection algorithms and then evaluate their performance.

7.5.1 Utility Estimation

Computation of uncertainty proceeds differently for ambiguity and correctness. In order to compute

the ambiguity of a sentence by way of entropy, we approximate the per-sentence tag sequence

entropy by summing over an estimate of the conditional per-word tag entropy where the previous

tags are taken from the Viterbi-best sequence of tags [34]. For OMM, it is sufficient to subtract the

probability of the Viterbi-best tag sequence from one.

Similar to Engelson and Dagan [27], for correctness, each member of a committee produces

the most probable tag sequence for a sentence and a vote histogram is created for each word; each

75



www.manaraa.com

member votes once for the tag it chose. The same measures of uncertainty can be computed for this

vote distribution as above.

7.5.2 Cost Estimation

There are three cost estimates that we can use in the absence of the truth during the annotation

process. First, we can assume constant cost per sentence. Second, we can assume that cost is

proportional to the number of words in the sentence. Engelson and Dagan [27] as well as Tomanek

et al. [91] do the latter and thereby implicitly assume the “length” cost function without explicitly

acknowledging the question of cost. Lastly, Haertel et al. [34] argue that the most important cost is

hourly cost. For the purposes of the experiments reported in this work, we estimate the length of

time required to annotate any given sentence with POS tags using the “hourly cost model” of time

required for annotation that Ringger et al. [73] developed based on a user study:

h = (3.80 · l +5.39 · c+12.57)/3600 (7.2)

where h is the time in hours spent on the sentence, l is the number of tokens in the sentence, and c is

the number of tags in the sentence that need correction. The expected value of this cost function can

easily be estimated in ROI. Since l is known for each sentence, we need only estimate ĉ, the expected

number of tags to be changed in a sentence w with the most-likely tags t selected by the tagger. In our

model (described in the following section), this is ĉ = Â|w|
i=1 [1� p(ti|w, ti�2, ti�1,fff (w, i, ti�2, ti�1))].

7.5.3 Experimental Setup

We employ an order-two Maximum Entropy Markov Model (MEMM) for all models. The features

used in this work are mostly based on work by Toutanova and Manning [92]; the tagger is near the

state-of-the-art, achieving 96.90% in tag accuracy once AL reaches completion.

Our data consists of English prose from the POS-tagged Wall Street Journal text in the Penn

Treebank (PTB) version 3. Sections 2-21 serve as initially unannotated data and section 24 is the
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set on which tag accuracy is computed at the end of every round of AL. By using the true labels

and comparing them to the output of a tagger trained on the sentences annotated up through the

end of the current round, it was possible to use equation 7.2 to estimate the amount of time that

would have been required to annotate each sentence. Ideally, we would evaluate the effectiveness

of the various algorithms by measuring the actual time of human annotators. Unfortunately, this

would require that we pay annotators to tag an entire data set many times to achieve a statistically

significant comparison of the algorithms. Clearly this is not feasible, although Hachey et al. [33] do

this (once) for three algorithms on a set of 100 sentences. Our experiments show that the largest

cost reductions over baseline come long after the first 100 sentences. In a real AL environment, it

would be possible to estimate annotation cost during the annotation process, an idea we wish to

pursue in future work.

In order to minimize the amount of time that the human waits for the computer to retrain the

model and choose the next sentence to annotate, it is sometimes desirable to process sentences in

batches, even though this can slightly decrease the efficiency of AL. Sentence selection and model

training is relatively cheap in the early stages of AL and accuracy rises very quickly, whereas the

opposite is true at the later stages. Based on initial tests, we found that a batch size that increases

exponentially as a function of the number of previously annotated sentences had little perceivable

effects on the accuracy achieved for any (human) hourly cost. In a real annotation task, batch

size can be self-determined by the amount of time it takes the algorithm to select a sentence in

the previous round. Following Engelson and Dagan [27], rather than scoring every unannotated

sentence, we instead score only a sample of the sentences. We found that maintaining a candidate

set size 500 times the size of the batch worked well. For committee-based approaches, the k

committee members were trained using separate bootstrap samples from the available annotated

data. Following Tomanek et al. [91], we use a committee of size three as a reasonable balance

between computational burden and model diversity. Results are averaged over a minimum of 15

runs from different random initial sentences.
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Cost Estimator
Distr. Type Uncertainty Calc. Constant Num Words Exp. Hourly Cost

U
til

ity
Es

t. ambiguity
entropy QBUE* QBUE/N* QBUE/EHC

one-minus-max QBUOMM QBUOMM/N QBUOMM/EHC

correctness
entropy QBCE QBCE/N QBCE/EHC

one-minus-max QBCOMM* QBCOMM/N* QBCOMM/EHC
K-L divergence QBCKL* QBCKL/N* QBCKL/EHC

Table 7.1: Naming conventions for the various combinations of utility and cost estimators used in
ROI for the experiments; asterisks indicate combinations not investigated in this work.

To assess the performance of each algorithm, we follow Haertel et al. [34] in their use of

“cost reduction” plots. In these plots, the accuracy (utility) is the independent variable. The percent

reduction in cost over the cost of the random baseline for the same accuracy a is then computed

as r(a) = (costrnd (a)� cost (a))/costrnd (a). Consequently, the random baseline has no reduction

compared to itself and represents the trajectory r = 0.0. For a specific (cost, accuracy) point on a

learning curve, the corresponding value of the cost on the baseline learning curve is estimated by

linear interpolation between neighboring points on the baseline. In these graphs, a higher reduction

represents a greater advantage.

7.6 Results

To show the efficacy of the ROI approach, we separately investigate the effects of different cost

and utility estimators. The naming conventions for the various combinations are summarized in

Table 7.1.

7.6.1 Cost Estimators

In Figure 7.1, we plot the reduction of hourly cost using each of the three different cost estimates

for the ROI algorithm (constant per-sentence cost, length of sentence, and estimated hourly cost)

and two different utility estimators (QBCE and QBCOMM). Each of these algorithms is evaluated

on the basis of two different costs: pay-by-the-word, and pay-by-the-hour. We chose to use QBCE

since it is the one employed by Engelson and Dagan [27] for POS tagging (the actual algorithm is
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Figure 7.1: Comparison of three cost measures (EHC, N, and constant) for QBCE (a,c) and
QBUOMM (b,d) when paying annotators per tagged word (a,b) or per hour (c,d).

our QBCE/N variant). Haertel et al. [34] have previously shown QBCOMM/N to be superior to

QBCE/N when paying annotators by the hour on this task for this dataset.

The cost-conscious algorithms (i.e., the N- and EHC-variants) outperform those that assume

constant cost. The similarity of these variants is due in part to the role of sentence length in the

hourly cost model and the fact that after only a few dozen iterations, the tagger has reached high

enough accuracy that the number of words needing correction is low. Interestingly, when paying

annotators per word annotated (Figures 7.1a-b), the variants that use estimated hourly cost tend to

(barely) out-perform those that directly estimate the per-word-cost. We note that the models are

error-prone in the early stages of AL. We hypothesize that since the same error-prone model is
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used in the computation of both the numerator and the denominator in the EHC-variants, errors

effectively “cancel out” whereas for the N-variants, the model is used only in the computation of

the numerator.

When evaluating the performance of the algorithms based on paying annotators by the hour

(Figures 7.1c-d), QBCE/EHC reaches an advantage over baseline of around 73%; even greater

advantages are reached by the cost-conscious QBUOMM variants. Importantly, the EHC-variants

enjoy a greater reduction than the other cost estimators at all accuracy levels, providing empirical

evidence that ROI typically maximizes utility per cost when the estimators match those being

measured. However, the advantage of the EHC-variants compared to the N-variants diminishes at

high levels of accuracy because EHC is approximately proportional to the length of the sentence

for high levels of accuracy. Both variants exhibit a growing advantage over the non-cost-conscious

QBCE and QBUOMM at these higher levels of accuracy. Interestingly, even these constant cost

estimators have a clear advantage over the baseline (nearly a 40% reduction in cost for QBCE and

46% for QBUOMM). Finally, QBCE/N has little advantage over baseline when paying annotators

by the hour until it reaches around 89% accuracy (Figure 7.1c).

7.6.2 Utility Estimators

Since the EHC estimate of cost outperforms the others, we fix this estimate of cost to evaluate the

different utility (accuracy) estimators. Figure 7.2 depicts the relative advantage of five accuracy

estimators: two single model ambiguity-based estimates, QBUE/EHC and QBUOMM/EHC; two

committee-based correctness estimates, QBCE/EHC and QBCOMM/EHC; and KL-divergence to

the mean, QBCKL/EHC.

All algorithms enjoy a relatively large reduction in cost over baseline, with QBCE/EHC and

QBCKL/EHC achieving nearly a 73% reduction in cost. We were unable to collect as much data

for QBUOMM/EHC, but it would appear to enjoy an even greater advantage. The OMM approach

outperforms the entropy-based method for ambiguity estimators, although no such advantage exists
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Figure 7.2: Comparison of utility estimators.

for correctness estimators. All of the committee-based variants performed nearly equally well. We

suspect that one limiting factor is the committee size and possibly our use of bootstrap sampling.

We were somewhat surprised to see that the ambiguity-based estimates of accuracy outper-

formed the correctness-based estimates. The ambiguity-based estimates are known to struggle with

cases that are truly ambiguous and hence correctness-based approaches were thought to perform

better in this context. Small committee size could be a factor, but perhaps entire tag sequences are

less ambiguous than individual tags, due to potentially disambiguating interactions between words.

7.7 Conclusions and Future Work

We began this paper by discussing the role and importance of utility and cost in AL. By explicating

a framework for AL, we hope that better cost-conscious approximations can be built. To this end we

introduced a new heuristic, ROI. One advantage to ROI is that any existing algorithm can become

cost-conscious by simply normalizing existing utility estimators by an estimate of cost.

In our experiments, we focused on POS tagging of the Penn Treebank, comparing the

accuracy of different combinations of cost and utility in ROI. We showed that, not surprisingly,

one should usually employ that estimate of cost in the ROI algorithm which matches the one to be

81



www.manaraa.com

measured. We also found that algorithms based on uncertainty due to ambiguity worked better than

the correctness-based algorithms for POS tagging on the Penn Treebank.

To the best of our knowledge, whereas some prior work (e.g., Kapoor et al. [46]) acknowl-

edges query cost and other prior work (e.g., Engelson and Dagan [27]) estimates query cost in an

implicit fashion, this work is the first to present results of AL algorithms that explicitly incorporate a

realistic query cost based on a predictive model of human annotation time. The ROI framework also

generalizes those earlier efforts. Furthermore, our results suggest that, despite its simplicity, ROI is

a valuable first step towards developing cost-conscious AL algorithms. We note that although ROI

is a simple concept, the difficult part consists in developing appropriate estimates of cost and utility,

and every project will need to develop their own estimates. Nevertheless, this work suggests that

doing so is worthwhile since ROI can improve the efficiency of AL, making effective cost-conscious

AL feasible.

It should be possible to allow the human to annotate while the computer selects a sentence.

In future work, we intend to explore how to take better advantage of overlapping the work of the

human and the computer to reduce overall cost. Finally, although our experiments dealt with POS

tagging on the Penn Treebank, we have explained why ROI performs well and hypothesize that

ROI performs equally well on many other AL tasks, especially other sequence-labeling problems.

Testing this hypothesis is also the subject of future work.

7.8 Errata

The published version of this chapter states that we use one-minus-max (OMM; defined in Sec-

tion 7.3) as a benefit estimator. We have since found that our implementation was actually computing

�maxt log p(t|w), which we term NLMP in Chapter 8; we use the same estimator in Chapter 9.

Note that, although OMM and NLMP produce scores that would rank instances the same based

solely on this estimate of benefit, in the context of ROI, the division by cost alters the rankings since

the two benefit estimators are not linearly related. This issue is touched upon further in Chapter 8.
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In addition, the published version of this paper contains an incorrect date for the publication

by Raiffa and Schlaifer [69] which has been updated for this version.
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Chapter 8

An Analytic and Empirical Evaluation of Return-on-Investment-Based Active Learning

Abstract

Return-on-Investment (ROI) is a cost-conscious approach to active learning (AL) that considers

both estimates of cost and of benefit in active sample selection. In this chapter, we investigate the

conditions for successful cost-conscious AL using ROI by proving the conditions under which ROI

would optimize the area under the cost/benefit curve. We then empirically measure the degree to

which optimality is jeopardized in practice when the conditions are violated. We find that the more

linearly related a benefit estimator is to true benefit, the better it performs when paired with an

imperfect cost estimate in ROI. Lastly, we use our analysis to explain the mixed results of previous

work. Our results show that ROI can indeed successfully reduce total annotation costs.

8.1 Introduction

In active learning (AL), sample selection algorithms sequentially choose instances, or “samples,”

to be labeled/annotated by an oracle; each annotated instance results in a measurable benefit (e.g.,

increase in model accuracy) and incurs a specific cost (e.g., time needed to obtain the label).

Unfortunately, until recently, AL research has ignored the fact that instances have varying costs.

Recent decision-theoretic approaches (e.g., Liang et al. [52]) can incorporate per-instance cost,

but typically ignore it during experimentation, due in part to the difficulty of subtracting cost

from benefit when they are measured in different units [24, 36]. Return-on-investment (ROI) is a

cost-conscious technique that avoids this requirement by selecting the instance x⇤ having maximum
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net benefit per unit cost, i.e.,

x⇤ = argmax
x

bene f it(x)� cost(x)
cost(x)

= argmax
x

bene f it(x)
cost(x)

. (8.1)

This approach to AL was independently proposed by Donmez and Carbonell [24], Haertel et al.

[36], and Settles et al. [81]; in addition, Tomanek and Hahn [89] evaluated the effectiveness of ROI.

Unfortunately, the results are mixed. In addition, despite its intuitive appeal and recent attention

as a practical cost-conscious algorithm, there has been little theoretical justification for ROI in the

context of AL.

The purpose of this chapter is to provide an initial theoretical analysis of ROI that allows us

to explain its behavior in a practical environment. We also empirically assess the degree to which

violated conditions affect the overall performance of ROI.

The chapter is organized as follows: related work is presented in Section 2. Section 3

examines the conditions under which ROI would be optimal. Section 4 discusses the experimental

methodology. Section 5 experimentally assesses the extent to which the conditions hold in practice,

but outside the context of AL while Section 5 explores the overall effect on AL. Finally, Section 6

presents our conclusions and future work.

8.2 Related Work

The very essence of active learning is to select the next “best” instance to be annotated. This, of

course, raises the question as to which selection function is optimal. Cohn et al. [17] derive a

solution for selecting the instance that minimizes model variance. A related class of solutions based

on optimal experimental design use Fisher information to select the optimal instance [98]. However,

these approaches fail to account for problems in which instances are not equally costly to annotate.

Decision theory offers an elegant framework for (greedily) selecting the next best instance

based on utility and which can handle variable query costs; some examples include Liang et al. [52],
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Anderson and Moore [2], Margineantu [58], and Kapoor et al. [46]. In this framework, the optimal

instance is the one which has maximum net utility, i.e., utility less cost. However, this approach

requires that net utility and cost be in the same units. This requirement is particularly problematic

when heuristics (such as entropy) are used to approximate expected utility.

Another approach, borrowed from the financial industry, is return-on-investment (ROI)

[24, 36, 81]. ROI is related to the decision theoretic approach [36]; however, unlike the decision

theoretic approach, ROI does not require conversion between units of utility (benefit) and cost.

ROI has explicitly been employed with mixed results on a variety of tasks. Donmez and

Carbonell [24] show positive results with ROI on face detection, letter recognition, spam detection,

and high revenue detection tasks, but do not evaluate ROI using variable instance costs. Settles

et al. [81] evaluate ROI on entity-relation tagging, speculative text classification, and information

extraction. They limit themselves to an N-best approximation to entropy for the sequence labeling

tasks, but ROI does not outperform basic AL. Haertel et al. [36] show positive performance of

ROI on English part-of-speech tagging. Finally, Tomanek and Hahn [89] find that ROI slightly

outperforms two new cost-conscious algorithms when an appropriate benefit function is used.

In short, ROI is a promising approach to cost-conscious AL that can account for variable

instance cost without requiring cost and benefit to be in the same units. However, unlike optimal

experiment design and decision theory, the theoretical underpinnings of ROI for AL have hitherto

remained largely unexplored and the mixed results require reconciliation.

8.3 Theoretical Analysis of ROI

The fact that ROI was successful in some previous work indicates that it is doing something right.

The purpose of this section is to investigate those reasons by providing a bottom-up theoretical

justification for ROI. That is, this section proposes Area Under the cost/benefit Curve (AUC) as a

suitable objective function and then enumerates a set of conditions that, if true, would lead to ROI

maximizing AUC. As a result of the bottom-up derivation, the assumptions made are somewhat
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strong, but we dedicate the next two sections to analyzing the degree to which they hold in practice

and their effect on results in practice.

We begin with a brief set of definitions. AL algorithms sequentially select instances from

a set of unlabeled instances U (“the pool”). As an instance x 2 U is annotated with label y, it

results in a measurable benefit and also incurs a specific cost.1 In general, the benefit and cost

of obtaining a particular annotation may depend on previously obtained annotations. Thus, we

define total benefit and cumulative cost to be functions (b(·) and c(·), respectively) of a sequence

of labeled data L = h(x1,y1), . . . ,(xn,yn)i. For simplicity, we assume that the cost to annotate an

instance is independent of its order, although it can be shown that this assumption has no bearing on

the final analysis. Therefore, c(L1...i) = Âi0 c(Li0).

There are multiple metrics for comparing the performance of AL algorithms. In a real

annotation project, the only metric that matters is the final benefit that is achieved. However,

the algorithm must be selected before annotation begins and the algorithm is chosen based on

the outcomes of prior experiments under similar circumstances. Due to the inherent uncertainty

surrounding the applicability of the results to the new annotation project, selecting an algorithm

based on the difference in benefit at any one specific cost (e.g., the budget available for the new

project) is dangerous. Instead, the trends over sufficiently large ranges of cost should be considered.

This information is conveyed in a cost/benefit curve (a generalization of standard learning

curves) which parametrically plots b(L1...i) against c(L1...i) for i 2 {1, . . . , |L|}. All previous work

of which we are aware evaluate AL using cost/benefit curves or derivations thereof. In general,

curves that tend to the upper-left corner of the graph are preferable, even when they end at the same

point as other curves. This notion of preference can be formalized into an objective function in

which AUC is to be maximized. Note that Settles and Craven [80] and Baldridge and Osborne [6]

use AUC to evaluate AL algorithms.

We now formally define AUC. Assuming linear interpolation between discrete neighboring

points, AUC is the sum of the area of the right trapezoids defined by adjacent points on the curve.
1For the purposes of this section, we follow previous work in assuming a single annotator.
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Let ai(L) be the area of the ith trapezoid:

ai(L) =
1
2
[c(L1...i)� c(L1...i�1)] · [b(L1...i�1)+b(L1...i)] (8.2)

(where c( /0) = b( /0) = 0). Then, the AUC defined by the sequence L is:

auc(L) = Â|L|
i=1 ai (L) . (8.3)

Maximizing AUC using AL can be seen as a sequential decision problem in which each

decision consists of selecting an instance for annotation. The optimal instance to select given

previous annotations L, will depend on the decision’s effect on the next decision, and the effect of

the second decision on the third, and so forth, until all decisions have been made. To account for

this recursive dependence, we must consider entire sequences of decisions. Note that if we do not

allow instances to be selected more than once from U and we will eventually choose every instance,

then the number of decisions per sequence is N = |U |. Since the actual annotations that the oracle

will provide is unknown, they must be considered in expectation represented with random variables

Yi. Given a sequence of already annotated data L, one approach to maximizing AUC in expectation

that accounts for this recursive effect of decisions is:2

x⇤1, . . . ,x
⇤
N =

argmax
x1,...,xN

EY1,...,YN |x1,...,xN ,L [auc(L�h(x1,y1), . . . ,(xN ,yN)i)] , (8.4)

where � represents sequence concatenation. Although finding the optimal sequence accounts

for the effects each decision has on successive decisions, in fact, the sequential decision process

protocol requires only the first instance in this sequence, viz., x⇤1. We then append x⇤1 and the oracle’s

annotation y1 for the instance to L. The result is an updated belief reflected in the expectations (via

the new L) used to select the next instance.
2Recall that this derivation is bottom-up; see Haertel et al. [36] for a decision-theoretic variant.
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We now derive ROI from equation 8.4 under the following conditions:

1. The covariance of cost and benefit is zero.

2. The cost and benefit of each instance are independent of the order in which instances are

annotated.

3. Each r.v. Yi (i.e., label) is conditionally independent of all other Yj 6=i, given xi and L.

4. Cost and benefit are exactly computed up to a scalar constant.

The reader is reminded that these conditions are derived in a bottom-up fashion and that we do

not necessarily presume them to hold in practice; we briefly overview their practicality herein

and examine the degree to which they hold in our experiments. While it is conceivable that some

annotation problems have zero covariance between cost and benefit, there are certainly cases where

there may be some correlation. This correlation is especially evident in structured learning problems,

e.g., “larger” instances (e.g., long sentences) will tend to contain more information but be more

costly. However, to our knowledge, the amount of correlation in such instances has not been

studied previously; we provide some data in the next section. Although cost may be independent of

annotation order (as implicitly assumed by previous work, e.g., Settles et al. [81]), the benefit of an

instance will, in fact, usually depend on the order in which it is annotated. For example, instances

annotated earlier will lead to larger increases in accuracy than if the same instances were annotated

later. In fact, if both cost and benefit are independent of the order in which they are annotated,

active learning would be unnecessary. Nevertheless, traditional active learning algorithms can be

seen as making this very assumption. Active learning presumably works because this assumption

is approximately true for a single decision. Since beliefs are updated after each new annotation,

it continues to be approximately true each decision. Condition 3 is similar to the assumption that

benefit is independent of the order in which instances are annotated, but applies distributionally

and is more mathematically precise. Finally, optimal (exact) benefit estimators are computationally

intractable. While some approaches are optimal for the last decision and perform very well (e.g.,

Roy and McCallum [75]), these approaches are impractical for structured prediction tasks; we will
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examine the effectiveness of several benefit estimators in our empirical examination. Similarly,

although cost is sometimes knowable a priori it often is not. However, Settles et al. [81] showed

that cost can often be reliably learned in practice.

While we defer the question of the degree to which these assumptions are violated in

practice to our experiments, we proceed with the analysis as if they held true to better understand

the theoretical underpinnings of ROI. In the context of maximization, the scalar constants allowed in

condition 4 can be ignored. The linearity property of expectations allows us to move the expectation

in equation 8.4 inside of the sum in equation 8.3. The first condition then allows us to move the

expectation further into the area calculation so that equation 8.2 becomes (omitting expectation

indices for brevity):

ai(L) =
1
2
(E [c(L1...i)]�E [c(L1...i�1)]) · (E [b(L1...i�1)]+E [b(L1...i)]) .

Condition 2 implies that b(L1...i) = Âi
i0=1 b(Li0); applying linearity, we obtain:

E [b(L1...i)] =
i

Â
i0=1

Eyi0 |x1...i0 ,y1...i0�1,L [b(Li0)]

(idem. for cost). Finally, condition 3 implies that:

E [b(L1...i)] =
i

Â
i0=1

Eyi0 |xi0 ,L [b(Li0)]

(idem. for cost). This result allows us to statically precompute the expected cost and benefit of

each instance. Because these quantities can be computed independently of one another, we can

represent each instance xi by a line segment with fixed width and height—the expected cost and

benefit, respectively, according to the current model–and statically compute the area using these

line segments.

We now prove that, under these conditions, selecting instances in non-strict slope-decreasing

order (i.e., according to ROI) maximizes AUC.
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(a) (b)

Figure 8.1: A comparison of the area under the curve when swapping two adjacent line segments to
put them in slope-decreasing order. (a) total ordering T (b) T’ (see text).

Theorem 1. Consider a set S of n arbitrary line segments s1, . . . ,sn. The area under the curve

that results from joining the segments end to end is a maximum if the segments are in non-strict

slope-decreasing order.

Proof. The proof is by contradiction. Suppose that joining the segments end-to-end in non-strict

slope-decreasing order does not result in maximal area. Then, there exists a (non-strict) total

ordering on S that is not non-strict slope-decreasing but whose resulting area is a maximum; call

this ordering T . For notational convenience, we will let ti denote the segment in S corresponding to

the ith element according to T . Since T is not in not-strict slope-decreasing order, there must exist

an i such that the slope of ti is greater than ti�1. Define a new total ordering T 0 on S by swapping

the order of ti and ti�1 relative to T .

We sketch the rest of the proof with the aid of Figure 8.1, which depicts the aforementioned

swap. It can be seen in the figure that all of the area under the curve remains the same after the

swap, except for the areas marked E and E 0. Since T leads to maximal area, the area of E must be

greater than the area of E 0. Let hi and wi represent the height and width of segment i. Then,

area(E)> area(E 0)

wi ·hi�1 > wi�1 ·hi

hi�1

wi�1
>

hi

wi
,
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i.e., the slope of ti�1 must be greater than the slope of ti. But this is a contradiction; therefore,

T cannot lead to maximal area. Consequently, there is no T not in non-strict slope-decreasing

order that leads to maximal area; therefore, the only order that produces maximal area is slope-non-

increasing.

As previously mentioned, the aforementioned conditions create a series of line segments as

required by Theorem 1. Thus, if the conditions are met, then the sequence x⇤1, . . . ,x
⇤
N that maximizes

AUC is the sequence that is in non-strict slope-non-increasing order, by Theroem 1. Consequently,

the optimal instance to select is the one with the highest slope. Therefore, under these conditions,

ROI (see equation 8.1) would maximize AUC.

8.4 Methods

In this section, we describe our methodology for empirically assessing the degree to which the

conditions of Section 2 hold in practice and define what we mean by practical contexts. As

previously mentioned, testing these conditions across several combinations of benefit and cost

estimators produces a large quantity of results required for in-depth analysis; we therefore limit our

experiments to a single task: English part-of-speech (POS) tagging on the POS-tagged Wall Street

Journal text in the Penn Treebank version 3 [56].

For this task, we employ Maximum Entropy Markov Models (MEMMs) to model the

distribution of tags given words, p(t|w). All simulations are run on dual hex-core Intel Westmere

2.67 GHz CPUs equipped with 24 GB of RAM. AL typically begins with a small set of randomly

selected instances; we use 100 instances that are annotated “from scratch,” i.e., without AL. However,

we do account for the cost incurred by annotating the seed set using the cost simulation described

below. Each experiment is run 5 times with a different random seed. For TVE (a committee-based

approach; see below), we use a committee size of 5 and train all members in parallel. We additionally

score instances in parallel, using 4 threads; the remaining processors are used for training the cost

model, evaluating benefit, and garbage collection. For non-committee methods, we found that extra

scoring threads do not improve results.
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8.4.1 Cost Simulation

Since AL is evaluated on the basis of cost, an AL simulation must be capable of simulating the

cost of annotating any given instance, including any random noise. We use the linear model from

Ringger et al. [74] to predict the length of time required to annotate a sentence. This model assumes

that instances are pre-annotated using an automatic annotation model and the task of the annotator

is to correct the errors from the predictive model. The cost to annotate a sequence w pre-annotated

with tags t, where we will denote the true tags of the instance as y, is:

cost(w,y, t) = a +b · |w|+ g ·Â|y|
i=1 (yi 6= ti) (8.5)

The latter sum represents the number of tags from the pre-annotation that the annotator changed. We

estimate the parameters of the linear model (a = 50.534,b = 2.638,g = 4.440) using the user-study

data from Ringger et al. [74]. To add noise to the simulated times, we generate a random deviate

from a shifted Gamma distribution having mean equal to the time predicted by the model, a variance

of 5063.35 (the empirical variance of the user-study data), and a shift of 10.0 (near the minimum

time). We chose a (shifted) Gamma distribution because the data from the user study appear to be

Gamma distributed; in addition, the generated values are guaranteed to always be positive.

8.4.2 Cost Estimation

For our ROI estimators and other experiments, we use the same linear model for cost estimation as

above (i.e., equation 8.5). However, we learn the coefficients using the data obtained during AL

(ultimately obtained from the noisy simulation). Since we do not know which of the automatically

pre-annotated tags are incorrect during estimation, we must compute the expected number of

incorrect tags in place of the sum in equation 8.5.

The results of our experiments are potentially better than in practice since our cost estimate

has exactly the same form as the simulated true cost. However, the results are still useful because
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(1) the gamma-distributed noise in the true cost has high variance and (2) the estimate is computed

in expectation (using the learned model).

8.4.3 Benefit Estimation

ROI’s numerator is an estimate of the benefit of obtaining a label for a given instance. As pre-

viously mentioned, optimal benefit estimators are impractical for structured learning problems;

uncertainty-based heuristics are typically employed instead. Let the r.v. T represent a sequence of

tag assignments for sentence w. Drawing mostly from previous studies, we consider the following:

Constant (CONST). This estimator assumes all instances have equal benefit.

Approximate Token Entropy (ATE). Token entropy [80] approximates the true sequence entropy

as the sum of the entropy of the individual marginal distributions p(ti|w). The marginal

distributions can in turn be approximated as p(ti|w)⇡ p(ti|t⇤i�1,w) where t⇤i�i is the (i�1)th

tag in the Viterbi best sequence t⇤; a beam search can significantly reduce computation.

Monte Carlo Entropy (MCE). MCE uses a Monte Carlo approximation to compute the entropy,

i.e., E[� log p(t|w)], using samples taken from T|w (the trained MEMM).

N-best Sequence Entropy (NSE). NSE [80] approximates sequence entropy by computing the

entropy of the top-n sequences, where the probabilities are re-normalized to sum to unity.

Least Confidence (LC). LC [18], in contrast to entropy, is not concerned with the distribution over

the entire support, but rather focuses on the best option and its complement (the rest of the

support). It is the probability of being wrong, i.e., 1�maxt p(t|w).

Negative Max Log Probability (NMLP). NMLP [35] is defined as �maxt log p(t|w); it ranks

instances the same as LC but with different scores under the assumption that the relationship

between probabilities and change in accuracy is logarithmic rather than linear.

Token Vote Entropy (TVE). TVE [27] uses a committee of classifiers trained from bootstrapped

samples of the annotated data. For each word, each committee member votes for the tag it
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predicts for its word; the entropy of the distribution over votes is summed over each word in

the sentence.

8.4.4 Practical Active Learning

We are interested in empirically testing ROI outside of the clean mathematical environment implied

by Section 2. Previous work has assumed that annotators are constantly and instantly available so

that the machine may request an annotation at its leisure; we call this approach learner-initiated AL.

However, the reverse is true in practice (e.g., crowd-sourcing), i.e., annotators request instances from

the machine on demand, a scenario we call annotator-initiated AL. In either paradigm, the time an

annotator spends waiting for the machine affects cost, either directly (when annotators are paid by

the hour), or indirectly. We use the “Parallel No-Wait” active learning framework [35] that follows

the annotator-initiated paradigm. Although waiting cost is eliminated, selected instances are not

guaranteed to be “optimal” w.r.t. to the most recent models, a phenomenon known as staleness. We

further extend the framework by training the cost model in parallel to model training and instance

scoring.

Realistic annotation environments also often involve multiple annotators (cf. [24]). We

take an incremental step towards allowing multiple annotators by assuming that all annotators are

infallible and have the same distribution over the amount of time to annotate any given instance.

Under these circumstances, each instance needs to be annotated only once, and annotators are

interchangeable. In our simulations, we simulate in real time 20 tireless oracles who continuously

and simultaneously annotate instances for 50 hours each. Note that having annotators that are

constantly and instantly available (as in our experiments) is the worst possible case for the no-wait

framework since models are maximally out-of-date. Thus, this simulation provide a lower-bound

(empirically) on the AUC for more realistic annotation scenarios.
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8.5 From Theory to Practice: To What Degree Are the Conditions Met?

In this section, we empirically test some of the conditions from the preceding analysis in practical

contexts. For the purposes of this work, we are mostly interested in examining conditions 1 and

4. While condition 3 is assumed in most previous work, we leave quantification of the effects of

violating this condition and the related condition 2 to future work.

For these experiments, it is necessary to estimate true benefit and cost. Due to the complexity

of so doing, we compute the various metrics along a passive learning curve (i.e., without AL). We

compute the true cost of each instance as described above. In order to estimate the true benefit of a

particular instance at a particular point on the learning curve, we assume that the true benefit of an

instance is the change in held-out accuracy that would result from incorporating the instance with

its annotation into the training data; we ignore the effects of future choices. We compute the change

in accuracy (benefit) by adding the instance and its true label to the training data, retraining the

model, and then computing the model’s new accuracy on the held-out set. The process is repeated

to compute the true benefit of at least 1,000 instances and the statistics noted below are averaged

over 5 random initial training sets.

Is the covariance of cost and benefit zero? Using the aforementioned methodology, we

compute Pearson’s correlation coefficient (a normalized form of covariance) between benefit and

cost. As seen in figure 8.2a, true benefit and cost have virtually no correlation when model quality

is high, and is only weakly correlated in the early stages. Thus, condition 2 roughly holds.

To what extent is the cost estimate a scalar multiple of true cost? Using the technique

mentioned above, we produce pairs of true cost and estimated cost at various locations along the

learning curve and compute R2 values of a linear model estimated with the y-intercept fixed at

zero. Pearson’s correlation coefficient is inappropriate since it would allow for the cost estimate to

additionally be shifted. Note that an R2 of 1.0 would indicate that the cost estimate was an exact

scalar multiple of the true cost, while a zero would indicate no scalar relationship. We repeat this

test with differing amounts of variance in the simulated cost, which allows us to assess the effect of

poor cost models (good models will account for most of the variance). The results are shown in
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Figure 8.2b. The exponential decay as variance increases underscores the importance of accounting

for as much variance as possible in the cost model. We found the R2 values to be around 0.745

and 0.785 when the variance was equal to that of the aforementioned user study (and the one used

through the remainder of the experiments). We note that Settles et al. [81] and Arora and Nyberg

[4] report R2 values for cost models for different tasks on the order of 0.3–0.4. However, timing for

POS-tagging is much more predictable than the other tasks, resulting in orders of magnitude lower

variance in the observed cost; at the comparable levels of variance, our R2 values more closely

match those of previous work. In short, the high R2 values on our problem are indicative of a highly

scalar relationship between true and estimated cost as per condition 4.

To what extent are various benefits estimators scalar multiples of true benefit? We

repeat the experiment described for cost, but reporting the R2 values for the fit between true benefit

and several benefit estimators; Figure 8.2c depicts the results. Although the R2 values are much

worse than for the cost estimate, they are still reasonable. Most of the separation of algorithms

(where it exists statistically) occurs during the beginning stages of learning. NMLP has a slight

(though not statistically significant) advantage over ATE and MCE while all three are more linearly

related to true benefit than NSE and LC. Once the model achieves 91% accuracy, there is no

separation. We suspect that the quality of the estimate decreases as a function of model accuracy

due to the fact that well-trained MEMMs often produce peaked estimates of p(t|w) and all of the

benefit estimates are functions of this value. It may also be that the benefit estimates do not exhibit

the same level of diminishing returns as true benefit. The results suggest that condition 4 holds

weakly for benefit estimators.

Are instances with the highest slopes being selected? The success of ROI depends on its

ability to select the instance with the highest slope. Using the aforementioned setup, we compute

the largest slope in the sampled instances on the basis of estimated benefit and cost and divide it

by the largest slope according to the true values; we call this value the Percentage of Maximum

Attainable Slope (POMAS). Since multiple instances can be selected using the same model in the

no-wait framework, we repeat this procedure for the second highest slopes, etc., for the top-20
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slopes and average them. The results are in Figure 8.2d. The separation between algorithms at the

beginning mirror those of Figure 8.2c. In addition, the relatively low scores further suggest that the

estimators are falling far short of their potential (perhaps due in part to batching). Although the

previous experiments showed that the conditions hold reasonably well in practice, their combined

shortcomings lead to relatively sub-optimal selections.
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(a) (b)

(c) (d)

Figure 8.2: At various points on the learning curve: (a) correlation between true cost and true benefit
(b) R2 values representing the degree to which the cost estimate is a scalar multiple of the true
cost, for varying amounts of variance in the noise model of the true cost simulation (c) R2 values
representing the degree to which various benefit estimators are scalar multiples of true benefit (d)
POMAS of the top-20 instances.
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Figure 8.3: Expected benefit for various benefit estimators with true and estimated costs. The
median baseline performance (rnd) is depicted as a dashed line and is the same for both experiments.
Estimated cost affects the benefit estimates to different degrees.

8.6 Active Learning Results and Discussion

The previous experiments were conducted outside of the context of AL in order to gain insight into

how well the conditions of section 2 are met in practice. However, the most direct and important

evaluation is the comparison of the actual quantity of interest, AUC, in the type of practical AL

defined above. We compare normalized AUC (which represents the expected benefit across all costs)

for several benefit estimators and two cost estimates and combine the results from the previous

section with the theory from Section 2 to explain the outcome.

Although not predicted by the theory per se, we would expect AUC to decrease with

degradations in the cost and/or benefit estimates. First, we compare AUC using the true cost in

the ROI calculations (thus satisfying one half of condition 4) and compare the results to using

estimated cost learned during AL. The results are displayed in Figure 8.3. Interestingly, when cost is

exactly known (perfectly predictable), all estimators–even CONST–readily outperform the random
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baseline. Furthermore, the difference between most of the estimators (except perhaps CONST) is

not statistically significant, which suggests that a good cost estimate may be capable of overcoming

deficiencies in even very poor benefit estimators like CONST. Not surprisingly, all algorithms

perform worse when using the learned estimate of cost during AL (indicated by the downward

arrows). Although we found the quality of the learned cost models to be quite good in terms of

learned coefficients, the MSE is still high (on the order of the variance in the simulated times).

Further support that AUC follows the quality of estimates (an approximation to condition

4) comes from the fact that the performance of the various algorithms exactly follows the quality

of the corresponding benefit estimate (see Figures 8.2c and 8.2d). In fact, LC and NSE do no

better than random and CONST does much worse. Upon further examination, we found a common

property between these benefit estimators, namely, that most scores fall within an extremely narrow

range; i.e., there was very little difference between the scores of most instances (CONST being the

extreme case). NSE differs from the other entropy estimates primarily in the re-normalization. Due

to their nature, structured prediction problems have very large supports which tend to have long tails.

Therefore the top-n probabilities grossly underrepresent these distributions. In these circumstances,

renormalization has the effect of making scores very similar to each other—even for instances

of differing lengths. Similarly, although LC and NMLP would rank instances the same (before

dividing by cost; dividing by cost alters the rankings), the log in NLMP produces greater spread

in the score. In contrast, the cost estimates are better dispersed and therefore tend to dominate

ROI. To illustrate, consider the extreme case of CONST by substituting an arbitrary constant for

benefit in equation 8.1; instances are selected lowest-expected-cost first. On our particular task,

this scenario is particularly undesirable as the shortest sentences are nearly always the cheapest but

disproportionately information poor (a contributing factor to the non-zero correlation). In more

general terms, as the spread in the benefit estimates approaches zero (as in CONST), the cost

estimates increasingly become the discriminating factor. While this behavior is correct for perfect

benefit and cost estimates, it is problematic when condition 4 is violated.
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A few additional results are noteworthy. The Monte-Carlo estimate of entropy (MCE) may

perform slightly worse than ATE because of the additional expense incurred in the sampling process

(recall that the expensive scoring algorithms are naturally penalized in the parallel framework).

Also, TVE appears to be on-par with entropy-based selectors for this problem, but slightly inferior

to NMLP. We suspect that the primary difference is the extra expense incurred in training the

additional models.

The mixed results of previous work are explainable based on our analysis. While condition 4

requires that cost and benefit estimators be scalar multiples of the true values, our empirical results

suggest that better estimates yield higher AUC. We have explained why NSE has poor mathematical

properties for structured learning tasks and is therefore expected to produce relatively low AUC,

hence the negative results on the structured prediction tasks of Settles et al. [81]. In contrast, the

authors report positive results on a standard classification problem using a much better benefit

estimator, i.e., entropy (analogous to the other entropy-based estimates we investigated). We have

also explained the poor properties of LC for structured prediction; the results of Tomanek and Hahn

[89] present further evidence. Interestingly, they find that exponentiating LC leads to positive results.

Mathematically, exp(b (1� p)) behaves similarly to �log(p) (NLMP) in that they both separate

scores that are close together—the former much more so than the latter, especially for probabilities

of the very low magnitudes seen in structured prediction problems. In sum, the negative results of

previous work are due to poor benefit estimators, in particular LC and NSE; in contrast, positive

results are due to better benefit estimators.

8.7 Conclusions and Future Work

Return-on-investment-based AL successfully reduces annotation costs in practice by maximizing

the area under the cost/benefit curve. This chapter has provided an initial theoretical justification for

ROI-based AL in a bottom-up fashion. It is the first step towards allowing us to predict when ROI

should work. Although this analysis is predicated on conditions that are violated in practice, we

have empirically demonstrated that better estimators lead to higher AUC. Although we focused our
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empirical analysis on a single task, other studies have applied ROI to several tasks and problem

types, and their results are consistent with our analysis. As a result of this work, we recommend

that practitioners carefully select their benefit and cost estimators, ensuring that they are “good”

estimators as described above. In particular, estimators that produce scores with relatively little

difference relative to the differences in cost should be avoided; thus, NSE and LC are generally poor

choices for structured prediction whereas NLMP and other entropy-based methods work reasonably

well when accuracy is the benefit. In sum, cost-conscious active learning can be successful in

practice when using ROI, so long as care is taken to choose reasonably good benefit and cost

estimators.

Our empirical results suggest that there is yet room for discovering improved benefit

estimators; future work could focus on directly and tractably estimating true cost and benefit

for structured prediction problems, and automatically tuning heuristic estimators to match true

benefit during AL. Future work may also benefit from investigating a different set of conditions for

simplifying equation 8.4.
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Chapter 9

Parallel Active Learning: Eliminating Wait Time with Minimal Staleness†

Abstract

A practical concern for Active Learning (AL) is the amount of time human experts must wait for the

next instance to label. We propose a method for eliminating this wait time independent of specific

learning and scoring algorithms by making scores always available for all instances, using old (stale)

scores when necessary. The time during which the expert is annotating is used to train models and

score instances–in parallel–to maximize the recency of the scores. Our method can be seen as a

parameterless, dynamic batch AL algorithm. We analyze the amount of staleness introduced by

various AL schemes and then examine the effect of the staleness on performance on a part-of-speech

tagging task on the Wall Street Journal. Empirically, the parallel AL algorithm effectively has a

batch size of one and a large candidate set size but eliminates the time an annotator would have

to wait for a similarly parameterized batch scheme to select instances. The exact performance of

our method on other tasks will depend on the relative ratios of time spent annotating, training, and

scoring, but in general we expect our parameterless method to perform favorably compared to batch

when accounting for wait time.
†Robbie Haertel, Paul Felt, Eric Ringger, and Kevin Seppi. Parallel active learning: Eliminating wait time with

minimal staleness. In Proceedings of the HLT-NAACL 2010 Workshop on Active Learning for Natural Language

Processing, pages 3341. Association for Computational Linguistics, 2010.
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9.1 Introduction

Recent emphasis has been placed on evaluating the effectiveness of active learning (AL) based on

realistic cost estimates [5, 36, 81]. However, to our knowledge, no previous work has included in

the cost measure the amount of time that an expert annotator must wait for the active learner to

provide instances. In fact, according to the standard approach to cost measurement, there is no

reason not to use the theoretically optimal (w.r.t. a model, training procedure, and utility function)

(but intractable) approach (see [36]).

In order to more fairly compare complex and time-consuming (but presumably superior)

selection algorithms with simpler (but presumably inferior) algorithms, we describe “best-case”

(minimum, from the standpoint of the payer) and “worst-case” (maximum) cost scenarios for

each algorithm. In the best-case cost scenario, annotators are paid only for the time they spend

actively annotating. The worst-case cost scenario additionally assumes that annotators are always

on-the-clock, either annotating or waiting for the AL framework to provide them with instances.

In reality, human annotators work on a schedule and are not always annotating or waiting, but in

general they expect to be paid for the time they spend waiting for the next instance. In some cases,

the annotator is not paid directly for waiting, but there are always opportunity costs associated with

time-consuming algorithms, such as time to complete a project. In reality, the true cost usually lies

between the two extremes.

However, simply analyzing only the best-case cost, as is the current practice, can be

misleading, as illustrated in Figure 9.1. When excluding waiting time for a particular selection

algorithm1 (“AL Annotation Cost Only”), the performance is much better than the cost of random

selection (“Random Total Cost”), but once waiting time is accounted for (“AL Total cost”), the AL

approach can be worse than random. Given only the best-case cost, this algorithm would appear to

be very desirable. Yet, practitioners would be much less inclined to adopt this algorithm knowing

that the worst-case cost is potentially no better than random. In a sense, waiting time serves as a
1We use the ROI-based scoring algorithm [36] and the zero-staleness technique, both described below.
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Figure 9.1: Accuracy as a function of cost (time). Side-by-side comparison of best-case and
worst-case cost measurement scenarios reveals that not accounting for the time required by AL to
select instances affects the evaluation of an AL algorithm.

natural penalty for expensive selection algorithms. Therefore, conclusions about the usefulness of

AL selection algorithms should take both best-case and worst-case costs into consideration.

Although it is current practice to measure only best-case costs, Tomanek et al. [91] mention

as a desideratum for practical AL algorithms the need for what they call fast selection time cycles,

i.e., algorithms that minimize the amount of time annotators wait for instances. They address this by

employing the batch selection technique of Engelson and Dagan [27]. In fact, most AL practitioners

and researchers implicitly acknowledge the importance of wait time by employing batch selection.

However, batch selection is not a perfect solution. First, using the traditional implementation,

a “good” batch size must be specified beforehand. In research, it is easy to try multiple batch sizes,

but in practice where there is only one chance with live annotators, specifying a batch size is a

much more difficult problem; ideally, the batch size would be set during the process of AL. Second,

traditional methods use the same batch size throughout the entire learning process. However, in

the beginning stages of AL, models have access to very little training data and retraining is often

much less costly (in terms of time) than in the latter stages of AL in which models are trained on

large amounts of data. Intuitively, small batch sizes are acceptable in the beginning stages, whereas

large batch sizes are desirable in the latter stages in order to mitigate the time cost of training. In

fact, Haertel et al. [36] mention the use of an increasing batch size to speed up their simulations,

but details are scant and the choice of parameters for their approach is task- and dataset-dependent.
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Also, the use of batch AL causes instances to be chosen without the benefit of all of the most

recently annotated instances, a phenomenon we call staleness and formally define in Section 9.2.

Finally, in batch AL, the computer is left idle while the annotator is working and vice-versa.

We present a parallel, parameterless solution that can eliminate wait time irrespective of the

scoring algorithm and training method. Our approach is based on the observation that instances can

always be available for annotation if we are willing to serve instances that may have been selected

without the benefit of the most recent annotations. By having the computer learner do work while

the annotator is busy annotating, we are able to mitigate the effects of using these older annotations.

The rest of this paper will proceed as follows: Section 9.2 defines staleness and presents

a progression of four AL algorithms that strike different balances between staleness and wait

time, culminating in our parallelized algorithm. We explain our methodology and experimental

parameters in Section 9.3 and then present experimental results and compare the four AL algorithms

in Section 9.4. Conclusions and future work are presented in Section 9.5.

9.2 From Zero Staleness to Zero Wait

We work within a pool- and score-based AL setting in which the active learner selects the next

instance from an unlabeled pool of data U . A scoring function s (aka scorer) assigns instances a

score using a model q trained on the labeled data A ; the scores serve to rank the instances. Lastly,

we assume that an unerring oracle provides the annotations. These concepts are demonstrated in

Algorithm 3.

In this section, we explore the trade-off between staleness and wait time. In order to do so,

it is beneficial to quantitatively define staleness, which we do in the context of Algorithm 3. After

each model q is trained, a stamp is associated with that q that indicates the number of annotated

instances used to train it (see line 3). The staleness of an item is defined to be the difference between

the current number of items in the annotated set and the stamp of the scorer that assigned the

instance a score. This concept can be applied to any instance, but it is particularly informative to

speak of the staleness of instances at the time they are actually annotated (we will simply refer
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Input: A seed set of annotated instances A , a set of pairs of unannotated instances and their
initial scores S , scoring function s , the candidate set size N, and the batch size B

Result: A is updated with the instances chosen by the AL process as annotated by the oracle
1 while S 6= /0 do
2 q  TrainModel(A )

3 stamp |A |
4 C  ChooseCandidates(S ,N)

5 K  {(c[inst],s(c[inst],q)) | c 2 C }
6 S  S�C[K
7 T  pairs from K with c[score] in the top B scores
8 for t 2T do
9 S  S � t

10 staleness |A|� stamp // unused

11 A  A [Annotate(t)
12 end
13 end

Algorithm 3: Pool- and score-based active learner.

to this as staleness, disambiguating when necessary; see line 10). Intuitively, an AL scheme that

chooses instances having less stale scores will tend to produce a more accurate ranking of instances.

9.2.1 Zero Staleness

There is a natural trade-off between staleness and the amount of time an annotator must wait for

an instance. Consider Algorithm 3 when B = 1 and N = • (we refer to this parameterization as

zerostale). In line 8, a single instance is selected for annotation (|T |= B = 1); the staleness of this

instance is zero since no other annotations were provided between the time it was scored and the

time it was removed. Therefore, this algorithm will never select stale instances and is the only way

to guarantee that no selected instances are stale.

However, the zero staleness property comes with a price. Between every instance served to

the annotator, a new model must be trained and every instance scored using this model, inducing

potentially large waiting periods. Therefore, the following options exist for reducing the wait time:

1. Optimize the learner and scoring function (including possible parallelization)

2. Use a different learner or scoring function
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3. Parallelize the scoring process

4. Allow for staleness

The first two options are specific to the learning and scoring algorithms, whereas we are interested

in reducing wait time independent of these in the general AL framework. We describe option 3

in section 9.2.4; however, it is important to note that when training time dominates scoring, the

reduction in waiting time will be minimal with this option. This is typically the case in the latter

stages of AL when models are trained on larger amounts of data.

We therefore turn our attention to option 4: in this context, there are at least three ways to

decrease the wait time: (A) train less often, (B) score fewer items, or (C) allow old scores to be used

when newer ones are unavailable. Strategies A and B are the batch selection scheme of Engelson

and Dagan [27]; an algorithm that allows for these is presented as Algorithm 3, which we refer to as

“traditional” batch, or simply batch. We address the traditional batch strategy first and then address

strategy C.

9.2.2 Traditional Batch

In order to train fewer models, Algorithm 3 can provide the annotator with several instances scored

using the same scorer (controlled by parameter B); consequently, staleness is introduced. The

first item annotated on line 11 has zero staleness, having been scored using a scorer trained on all

available annotated instances. However, since a model is not retrained before the next item is sent to

the annotator, the next items have staleness 1,2, · · · ,B�1. By introducing this staleness, the time

the annotator must wait is amortized across all B instances in the batch, reducing the wait time by

approximately a factor of B. The exact effect of staleness on the quality of instances selected is

scorer- and data-dependent.

The parameter N, which we call the candidate set size, specifies the number of instances

to score. Typically, candidates are chosen in round-robin fashion or with uniform probability

(without replacement) from U . If scoring is expensive (e.g., if it involves parsing, translating,

summarizing, or some other time-consuming task), then reducing the candidate set size will reduce
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the amount of time spent scoring by the same factor. Interestingly, this parameter does not affect

staleness; instead, it affects the probability of choosing the same B items to include in the batch

when compared to scoring all items. Intuitively, it affects the probability of choosing B “good” items.

As N approaches B, this probability approaches uniform random and performance approaches that

of random selection.

9.2.3 Allowing Old Scores

One interesting property of Algorithm 3 is that line 7 guarantees that the only items included

in a batch are those that have been scored in line 5. However, if the candidate set size is small

(because scoring is expensive), we could compensate by reusing scores from previous iterations

when choosing the best items. Specifically, we change line 7 to instead be:

T  pairs from S with c[score] in the top B scores

We call this allowold, and to our knowledge, it is a novel approach. Because selected items may

have been scored many “batches” ago, the expected staleness will never be less than in batch.

However, if scores do not change much from iteration to iteration, then old scores will be good

approximations of the actual score and therefore not all items necessarily need to be rescored every

iteration. Consequently, we would expect the quality of instances selected to approach that of

zerostale with less waiting time. It is important to note that, unlike batch, the candidate set size

does directly affect staleness; smaller N will increase the likelihood of selecting an instance scored

with an old model.

9.2.4 Eliminating Wait Time

There are portions of Algorithm 3 that are trivially parallelizable. For instance, we could easily split

the candidate set into equal-sized portions across P processors to be scored (see line 5). Furthermore,

it is not necessary to wait for the scorer to finish training before selecting the candidates. And,

110



www.manaraa.com

as previously mentioned, it is possible to use parallelized training and/or scoring algorithms.

Clearly, wait time will decrease as the speed and number of processors increase. However, we

are interested in parallelization that can guarantee zero wait time independent of the training and

scoring algorithms without precluding these other forms of parallelization.

All other major operations of Algorithm 3 have serial dependencies, namely, we cannot

score until we have trained the model and chosen the candidates, we cannot select the instances for

the batch until the candidate set is scored, and we cannot start annotating until the batch is prepared.

These dependencies ultimately lead to waiting.

The key to eliminating this wait time is to ensure that all instances have scores at all times,

as in allowold. In this way, the instance that currently has the highest score can be served to the

annotator without having to wait for any training or scoring. If the scored instances are stored in a

priority queue with a constant time extract-max operation (e.g., a sorted list), then the wait time will

be negligible. Even a heap (e.g., binary or Fibonacci) will often provide negligible overhead. Of

course, eliminating wait time comes at the expense of added staleness as explained in the context of

allowold.

This additional staleness can be reduced by allowing the computer to do work while the

oracle is busy annotating. If models can retrain and score most instances in the amount of time it

takes the oracle to annotate an item, then there will be little staleness.2

Rather than waiting for training to complete before beginning to score instances, the old

scorer can be used until a new one is available. This allows us to train models and score instances

in parallel. Fast training and scoring procedures result in more instances having up-to-date scores.

Hence, the staleness (and therefore quality) of selected instances depends on the relative time

required to train and score models, thereby encouraging efficient training and scoring algorithms. In

fact, the other forms of parallelization previously mentioned can be leveraged to reduce staleness

rather than attempting to directly reduce wait time.
2Since the annotator requests the next instance immediately after annotating the current instance, the next instance

is virtually guaranteed to have a staleness factor of at least 1.
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These principles lead to Algorithm 4, which we call parallel (for clarity, we have omitted

steps related to concurrency). AnnotateLoop represents the tireless oracle who constantly requests

instances. The call to Annotate is a surrogate for the actual annotation process and most importantly,

the time spent in this method is the time required to provide annotations. Once an annotation is

obtained, it is placed on a shared buffer B where it becomes available for training. While the

annotator is, in effect, a producer of annotations, TrainLoop is the consumer which simply retrains

models as annotated instances become available on the buffer. This buffer is analogous to the batch

used for training in Algorithm 3. However, the size of the buffer changes dynamically based on

the relative amounts of time spent annotating and training. Finally, ScoreLoop endlessly scores

instances, using new models as soon as they are trained. The set of instances scored with a given

model is analogous to the candidate set in Algorithm 3.

9.3 Experimental Design

Because the performance of the parallel algorithm and the “worst-case” cost analysis depend on

wait time, we hold computing resources constant, running all experiments on a cluster of Dell

PowerEdge M610 servers equipped with two 2.8 GHz quad-core Intel Nehalem processors and 24

GB of memory.

All experiments were on English part of speech (POS) tagging on the POS-tagged Wall Street

Journal text in the Penn Treebank (PTB) version 3 [56]. We use sections 2-21 as initially unannotated

data and randomly select 100 sentences to seed the models. We employ section 24 as the set on

which tag accuracy is computed, but do not count evaluation as part of the wait time. We simulate

annotation costs using the cost model from Ringger et al. [74]: cost(s) = (3.80 · l +5.39 · c+12.57),

where l is the number of tokens in the sentence, and c is the number of pre-annotated tags that

need correction, which can be estimated using the current model. We use the same model for

pre-annotation as for scoring.

We employ the return on investment (ROI) AL framework introduced by Haertel et. al

(2008). This framework requires that one define both a cost and benefit estimate and selects instances
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Input: A seed set of annotated instances A , a set of pairs of unannotated instances and their
initial scores S , and a scoring function s

Result: A is updated with the instances chosen by the AL process as annotated by the oracle

1 B /0, q  null
2 Start(AnnotateLoop)

3 Start(TrainLoop)

4 Start(ScoreLoop)

5 procedure AnnotateLoop()
6 while S 6= /0 do
7 t c from S having max c[score]
8 S  S � t
9 B B[Annotate(t)

10 end
11 end
12 procedure TrainLoop()
13 while S 6= /0 do
14 q  TrainModel(A )

15 A  A [B
16 B /0
17 end
18 end
19 procedure ScoreLoop()
20 while S 6= /0 do
21 c ChooseCandidate(S )

22 S  S �{c}[{(c[inst],s(c[inst],q))|c 2S }
23 end
24 end

Algorithm 4: parallel

that maximize bene f it(x)�cost(x)
cost(x) . For simplicity, we estimate cost as the length of a sentence. Our

benefit model estimates the utility of each sentence as follows: bene f it(s) = � log(maxt p(t|s))

where p(t|s) is the probability of a tagging given a sentence. Thus, sentences having low average

(in the geometric mean sense) per-tag probability are favored. We use a maximum entropy Markov

model to estimate these probabilities, to pre-annotate instances, and to evaluate accuracy.
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Figure 9.2: Staleness of the allowold algorithm over time for different candidate set sizes

9.4 Results

Two questions are pertinent regarding staleness: how much staleness does an algorithm introduce?

and how detrimental is that staleness? For zerostale and batch, the first question was answered

analytically in a previous section. We proceed by addressing the answer empirically for allowold

and parallel after which we examine the second question.

Figure 9.2 shows the observed staleness of instances selected for annotation over time and for

varying candidate set sizes for allowold. As expected, small candidate sets induce more staleness,

in this case in very high amounts. Also, for any given candidate set size, staleness decreases over

time (after the beginning stages), since the effective candidate set includes an increasingly larger

percentage of the data.

Since parallel is based on the same allow-old-scores principle, it too could potentially see

highly stale instances. However, we found the average per-instance staleness of parallel to be very

low: 1.10; it was never greater than 4 in the range of data that we were able to collect. This means

that for our task and hardware, the amount of time that the oracle takes to annotate an instance is

high enough to allow new models to retrain quickly and score a high percentage of the data before

the next instance is requested.

We now examine effect that staleness has on AL performance, starting with batch. As

we have shown, higher batch sizes guarantee more staleness so we compare the performance of

several batch sizes (with a candidate set size of the full data) to zerostale and random. In order to

tease out the effects that the staleness has on performance from the effects that the batches have on
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wait time (an element of performance), we purposely ignore wait time. The results are shown in

Figure 9.3. Not surprisingly, zerostale is slightly superior to the batch methods, and all are superior

to random selection. Furthermore, batch is not affected much by the amount of staleness introduced

by reasonable batch sizes: for B < 100 the increase in cost of attaining 95% accuracy compared to

zerostale is 3% or less.

Recall that allowold introduces more staleness than batch by maintaining old scores for

each instance. Figure 9.4 shows the effect of different candidate set sizes on this approach while

fixing batch size at 1 (wait time is excluded as before). Larger candidate set sizes have less staleness,

so not surprisingly performance approaches zerostale. Smaller candidate set sizes, having more

staleness, perform similarly to random during the early stages when the model is changing more

drastically each instance. In these circumstances, scores produced from earlier models are not good

approximations to the actual scores so allowing old scores is detrimental. However, once models

stabilize and old scores become better approximations, performance begins to approach that of

zerostale.

Figure 9.5 compares the performance of allowold for varying batch sizes for a fixed candi-

date set size (5000; results are similar for other settings). As before, performance suffers primarily

in the early stages and for the same reasons. However, a batch exacerbates the problem since

multiple instances with poor scores are selected simultaneously. Nevertheless, the performance

appears to mostly recover once the scorers become more accurate. We note that batch sizes of 5

and 10 increase the cost of achieving 95% accuracy by 3% and 10%, respectively, compared to

zerostale. The implications for parallel are that staleness may not be detrimental, especially if

batch sizes are small and candidate set sizes are large in the beginning stages of AL.

Figure 9.6 compares the effect of staleness on all four algorithms when excluding wait

time (B = 20, N = 5000 for the batch algorithms). After achieving around 85% accuracy, batch

and parallel are virtually indistinguishable from zerostale, implying that the staleness in these

algorithms is mostly ignorable. Interestingly, allowold costs around 5% more than zerostale to
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Figure 9.3: Effect of staleness due to batch size for batch, N = •
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Figure 9.4: Effect of staleness due to candidate set size for allowold, B = 1
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Figure 9.5: Effect of staleness due to batch size for allowold, N = 5000
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Figure 9.6: Comparison of algorithms (not including wait time)
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Figure 9.8: Comparison of algorithms (including wait time)

117



www.manaraa.com

achieve an accuracy of 95%. We attribute this to increased levels of staleness which parallel

combats by avoiding idle time.

Since the amount of data parallel uses to train models and score instances depends on

the amount of time instances take to annotate, the “effective” candidate set sizes and batch sizes

over time is of interest. We found that the models were always trained after receiving exactly one

instance, within the data we were able to collect. Figure 9.7 shows the number of instances scored

by each successive scorer, which appears to be very large on average: over 75% of the time the

scorer was able to score the entire dataset. For this task, the human annotation time is much greater

than the amount of time it takes to train new models (at least, for the first 13,000 instances). The

net effect is that under these conditions, parallel is parameterized similar to batch with B = 1 and

N very high, i.e., approaching zerostale, and therefore has very low staleness, yet does so without

incurring the waiting cost.

Finally, we compare the performance of the four algorithms using the same settings as

before, but include wait time as part of the cost. The results are in Figure 9.8. Importantly, parallel

readily outperforms zerostale, costing 40% less to reach 95% accuracy. parallel also appears to

have a slight edge over batch, reducing the cost to achieve 95% accuracy by a modest 2%; however,

had the simulation continued, we may have seen greater gains given the increasing training time that

occurs later on. It is important to recognize in this comparison that the purpose of parallel is not

necessarily to significantly outperform a well-tuned batch algorithm. Instead, we aim to eliminate

wait time without requiring parameters, while hopefully maintaining performance. These results

suggest that our approach successfully meets these criteria.

Taken as a whole, our results appear to indicate that the net effect of staleness is to make

selection more random. Models trained on little data tend to produce scores that are not reflective of

the actual utility of instances and essentially produce a random ranking of instances. As more data

is collected, scores become more accurate and performance begins to improve relative to random

selection. However, stale scores are by definition produced using models trained with less data

than is currently available, hence more staleness leads to more random-like behavior. This explains
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why batch selection tends to perform well in practice for “reasonable” batch sizes: the amount

of staleness introduced by batch (B�1
2 on average for a batch of size B) introduces relatively little

randomness, yet cuts the wait time by approximately a factor of B.

This also has implications for our parallel method of AL. If a given learning algorithm and

scoring function outperform random selection when using zerostale and excluding wait time, then

any added staleness should cause performance to more closely resemble random selection. However,

once waiting time is accounted for, performance could actually degrade below that of random. In

parallel, more expensive training and scoring algorithms are likely to introduce larger amounts

of staleness, and would cause performance to approach random selection. However, parallel has

no wait time, and hence our approach should always perform at least as well as random in these

circumstances. In contrast, poor choices of parameters in batch could perform worse than random

selection.

9.5 Conclusions and Future Work

Minimizing the amount of time an annotator must wait for the active learner to provide instances

is an important concern for practical AL. We presented a method that can eliminate wait time by

allowing instances to be selected on the basis of the most recently assigned score. We reduce the

amount of staleness this introduces by allowing training and scoring to occur in parallel while the

annotator is busy annotating. We found that on PTB data using a MEMM and a ROI-based scorer that

our parameterless method performed slightly better than a hand-tuned traditional batch algorithm,

without requiring any parameters. Our approach’s parallel nature, elimination of wait time, ability to

dynamically adapt the batch size, lack of parameters, and avoidance of worse-than-random behavior,

make it an attractive alternative to batch for practical AL.

Since the performance of our approach depends on the relative time spent annotating,

training, and scoring, we wish to apply our technique in future work to more complex problems and

models that have differing ratios of time spent in these areas. Future work could also draw on the
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continual computation framework [39] to utilize idle time in other ways, e.g., to predict annotators’

responses.

9.6 Addendum: Strengthening the Case for the Parallel Framework

The purpose of this addendum is to investigate the effect that changes to the relative amounts of time

spent annotating versus training models and scoring instances have on performance. Various factors

affect the performance of active learning algorithms; Figure 9.9 depicts these factors for batch

and parallel during active learning. As can be seen in the figure, training and instance scoring

times and annotation time have different effects on the cost and benefit in batch versus in parallel.

Specifically, while training and instance scoring times directly affect cost in batch, in parallel they

only affect staleness, which in turn determines the instance to be selected, which itself affects the

annotation time. Additional pathways of interest in parallel not present in batch are the indirect

influence of training, scoring, and annotation times on benefit.

This addendum is organized as follows: first, we analyze the effects that the relative time

spent annotating has on performance in Section 9.6.1. We follow this up with experiments on real

data in Section 9.6.2. Conclusions can be found in Section 9.6.3.

9.6.1 Analysis of Effects of Relative Time Spent Annotating on Performance

Certain effects of annotation, training, and scoring times can be explained analytically. As before,

we assume that the annotator is continually and constantly requesting instances (the worst-case

scenario for parallel). For the purposes of this analysis, we additionally assume that each annotation

is equally costly to annotate. In this section, we let a represent the amount of time required to

annotate an instance and let t represent the amount of time required to train all models and score all

instances. In this analysis we examine the effect of decreasing a while holding t constant, first for

batch then for parallel.
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Figure 9.9: Factors affecting the performance of batch and parallel.

Batch

In batch, the average amount of time a user has to wait for an instance is the amount of time

required to train models and score instances divided by the batch size, i.e., t
B . Therefore, the total

cost is t
B +a. All else being equal, the total cost for an algorithm with no wait time (e.g., random

and parallel) is a. Thus, the ratio of the total cost of batch to the total cost of a wait-free algorithm

is a power law, (
t
B+a

a ).

Parallel

While changes in annotation time have a direct effect on cost in batch, the effect on cost in parallel

is indirect (see Figure 9.9b). Instead, staleness is directly affected. When a > t, parallel will have

time to train all models and score all instances while the annotator is still annotating. When the

annotator finishes and requests the next instance, the staleness will therefore be one (the instance

that the annotator has just annotated is the only source of staleness). Consequently, parallel will

perform nearly identically to the optimal (w.r.t. staleness) zerostale (which always trains models

and scores all instances using the latest annotation before serving the next instance to score, but

usually at significant wait cost). On the other hand, if a  t, then instances will queue up. For

example, if t
a is just under three, then the annotator can annotate three instances before all of the

remaining instances have been scored. The corresponding staleness of the instances will be one

(parallel can never use the just annotated instance for scoring), two, three, and then back to one
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again. In general, when annotation time is constant, the queue size (analogous to batch size) is

t/a and leads to an average staleness of
t
a+1

2 . Thus, the ratio of staleness to annotation time is also

a power law, but the actual effect of this staleness on cost will depend on the selection function,

dataset, etc. In contrast, the average staleness of batch depends solely on the batch size, but the

total cost is directly affected by annotation time.

Fortunately, under certain conditions, parallel can be guaranteed to never perform worse

than batch. Although we leave a formal proof to future work, a basic sketch is as follows. Suppose

we have a scoring function that is guaranteed to always rank instances at least as well as random on

the basis of benefit and annotation cost (but not necessarily total cost including wait time). Then, no

matter how stale instances are, we are guaranteed to be no worse than random. On the other hand,

even with the same scoring function, batch will perform worse than random when the ratio of wait

time to annotation time is sufficiently high since the wait time may negate any benefits gained by

selecting instances in a better order than random.

This is a strong guarantee and a compelling reason to use parallel. However, there is no

guarantee that parallel will outperform a well-tuned batch since batch has constant staleness

while parallel’s staleness depends on the difference between the train + score times and annotation

time. As a result, staleness may exceed that of batch. This will occur when training and/or

scoring are particularly expensive, causing very stale scores. While these same conditions will

certainly increase the waiting time of batch, the wait time is amortized across the entire batch. It is

therefore conceivable that in some annotation projects, stale instances may be more detrimental

to performance than an (amortized) increase in wait time. However, under such conditions it is

particularly important to select an appropriate batch size: too high and the (noticeably detrimental)

staleness increases; too low and the wait time increases, potentially risking performance degradation

below that of random.

Of course, the guarantee that parallel does not degrade below random is predicated on

a strong assumption. In practice, it is unknowable a priori whether an algorithm will produce a

ranking that outperforms random. However, such a selection function is likely to affect batch very

122



www.manaraa.com

similarly and will therefore also likely be worse than random, especially after incurring wait cost.

Also note that active learning itself relies on a slightly weaker premise: that scoring functions do

not produce rankings that outperform random on average. We hypothesize that, in practice, an

algorithm that outperforms random without accounting for waiting cost (e.g., using batch) will

be good enough to ensure that the results do not drop below the performance of random using

parallel.

9.6.2 Empirical Comparison

To demonstrate the effects of annotation time on the algorithms, we run active learning simulations

in which we fix the annotation time for each instance to 50, 100, 500, and 1000 seconds and compare

the resultant cost-reduction curves of batch and parallel relative to random. In keeping with our

previous experiments, we chose a batch size of 20 for batch. The results are in Figure 9.10.3 Please

note the change in scale between plots.

When annotation time is high (1,000 secs, i.e., over 17 minutes), both algorithms perform

similarly well with batch being only negligibly affected by its small amount of staleness (9.5)

compared to parallel’s (presumed) 1.0. As expected, the rate of degradation of batch is clearly a

power law in these results. Although parallel does seem to be affected by the increase in staleness

as annotation times decrease, unlike batch, its performance never degrades below that of random,

as predicted in the previous section.

9.6.3 Conclusions

In this addendum, we have investigated the effect of the ratio of annotation time to training and

scoring times on performance. The batch algorithm has the undesirable property that the ratio of

total time of batch to algorithms with no wait time is a power law. In contrast, the effect on total

time in parallel is indirectly determined by the staleness that decreasing annotation creates. While

the ratio of staleness to annotation is also a power law, under some (strict) conditions, we know
3Special thanks to co-author Paul Felt who ran the experiments and provided the graphs.
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(a) (b)

(c) (d)

Figure 9.10: A comparison of batch (green) vs. parallel (blue) on the basis of percent reduction in
cost relative to random (red) as a function of fixed per-instance annotation times: (a) 1,000 secs,
(b) 500 secs, (c) 100 secs, and (d) 50 seconds.

that parallel will not perform worse than random. However, even when the conditions are not fully

met, the performance of batch is also highly likely to suffer in similar ways. While a well-tuned

batch may outperform parallel, tuning batch to maximize performance in this way is an unsolved

problem. In fact, mistuning batch may cause performance to degrade below that of random. Thus,

the likelihood that batch will outperform parallel is low and unknowable. This is why we expect

practitioners to prefer parallel to batch moving forward.
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Chapter 10

A Design for Multi-Annotator Active Learning

Abstract

Active learning in practice often involves multiple, noisy annotators. These annotations can be

used to infer a ground truth annotation, learn each individual annotator’s accuracy, and estimate the

accuracy of the machine predicted annotations. In addition, existing methods for selecting instances

for annotation are not always applicable or effective with multiple annotators. While previous work

has examined some of these issues, no work has attempted to address them all—especially not with

a unified approach. In this chapter, we describe a simple and intuitive Bayesian model of annotation

that is designed to infer ground truth and estimate accuracies. We then describe how this model can

be used in an active learning setting to select instances for annotation. We are particularly interested

in the annotator-initiated case in which annotators request instances to annotate “on-demand”.

Our solution includes the use of return-on-investment to pick an annotator-specific instance for

annotation.

10.1 Introduction

In this final chapter, we address the issue of active learning with multiple, fallible annotators

with differing costs and accuracies. We are specifically interested in annotation environments in

which annotators request instances to annotate on-demand, which we call annotator-initiated active

learning (see Chapter 2). All known real-world annotation tasks operate in this manner. This chapter

presents a detailed solution to this problem and describes a set of experiments designed to highlight

the strengths and weaknesses of the approach.
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In the context of active learning for annotation with multiple annotators in an annotator-

initiated environment, we are interested in the following tasks:

• Inferring a “ground truth” annotation (i.e., selecting a final annotation for the corpus) in the

presence of noisy annotators with differing accuracies and costs. We refer to this task as the

ground truth task.

• Explicitly modeling and learning individual annotators’ accuracies, which we term annacc.

• Estimating the accuracy of the machine predicted annotations on the unlabeled data. We call

this task machacc.

• Selecting instances for annotators, in order to optimize the cost/benefit trade-off of obtaining

annotations (instances and annotators are of varying costs and benefits). This is the selection

task.

No previous work addresses the machacc task, nor does any work simultaneously address the other

three.

This chapter is organized as follows. We first review previous work in Section 10.2. We then

present our methods for addressing each of the aforementioned tasks using our Bayesian model and

a novel selection algorithm in Section 10.3. We present some preliminary results for multi-annotator

active learning in Section 10.4. Finally, conclusions and future work are discussed in Section 10.5.

10.2 Previous Work

There is a sufficient body of work surrounding the ground truth issue, especially in light of

recent interest in crowd-sourcing; Sheng et al. [83] tackle both ground truth and selection tasks

in the context of crowd-sourcing. In other particularly relevant work, Smyth et al. [84] applied a

technique from Dawid and Skene [22] to infer the locations of volcanoes in surface photographs

of Venus (ground truth); however, they were not concerned about the selection task and instead

requested that all five annotators annotate all instances. There is a growing body of variations and

extension to this simple “item-response” model to account for correlations among annotators or
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item difficulty [12, 40, 53, 72, 95, 96]. This work addresses ground truth and annacc, but neither

of the other two tasks.

The ground truth and annacc tasks can be seen as special cases of the fact-finding task [37,

65] in which the annotators are sources of information and their annotations are claims. However,

the general task of fact-finding is much more broad, and existing approaches to solving the problem

are generally overly complex for this simplified special case.

Donmez and Carbonell [24] propose a decision-theoretic framework specifically aimed at

answering the selection task. Their framework is capable of handling noisy annotators with different

accuracies and costs, but in order to model annotators’ accuracies, they spend a portion of the

budget on an initial exploration stage in order to estimate annotator accuracy; this initial estimate is

not updated during active learning, thus not truly addressing the issue of annacc. Furthermore, they

do not allow for redundant annotations: a single annotator is selected per instance and this noisy

annotation is assumed to be the ground truth, which does not directly address the ground truth task.

In a follow-up paper [25], the authors recognize the importance of redundant annotations. They use

active learning to select an instance, then use a reinforcement learning-inspired approach to select

the most accurate annotators for that instance in such a way that they are able to effectively balance

learning annotator accuracies and exploiting the most accurate annotators. They infer ground truth

via a majority vote. Perhaps the most problematic aspect of the paper is that it does not extend to

the more realistic annotator-initiated environment.

10.3 Methods

In this section, we describe our novel approach to the four tasks identified in the introduction to

this chapter. We begin by presenting a Bayesian model that can infer ground truth from multiple,

noisy annotators; infer the accuracy of each annotator; and predict the accuracy of the model on the

unlabeled portion of a corpus without any held-out data. We then describe how this model can be

used to select instances in an annotator-initiated environment.
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10.3.1 Model

Given a set of instances and the annotations for these instances (each instance may have zero or

more annotations), we are interested in the task of inferring a ground truth label, each annotator’s

accuracy, as well as the accuracy of the machine on the data that lacks annotations (without holding

out any data).

The model that we will use to address the first three tasks mentioned in the introduction

(i.e., everything but the selection task) is based on a Bayesian model we proposed in previous

work [13, 14], but which we extend and more fully develop in this work. The model is based

on three main principles: (1) the true labels are unobservable, (2) the machine itself should be

considered an annotator, and (3) all annotations may carry useful information. We additionally

assume that annotations are independent of one another given the true (unobservable) label. Since

we do not explicitly exclude multiple annotations from the same annotator on the same instance,

this independence assumptions extends to such annotations.

Figure 10.1 presents the model. We abbreviate the Dirichlet distribution as Dir, the symmet-

ric Dirichlet distribution as SymDir, the categorical distribution (i.e., a multinomial distribution with

size parameter equal to one) as Cat, and the multinomial distribution as Mulitnom, parameterized

by size and probabilities. In addition, | · |1 denotes the L1-norm. The relevant constants for the

model are: J is the number of annotators, K is the number of labels, N is the number of instances,

and F is the number of features.

In addition, we adopt the following notational conventions. In statistics, random variables

are typically rendered in capital (Roman) letters, while values that they can assume are presented in

lowercase, e.g., Yi = yi. However, following common practice, we are sloppy with the distinction,

typically preferring the lowercase letters for both so long as context allows for proper disambiguation.

We also use lowercase p to represent both pmfs and pdfs.

We assume that for the ith data instance xxxi, the annotations aaai j are conditionally i.i.d. of each

other and the instance (xxxi) given the (unknown) label yi, whose a priori distribution is qqq . Therefore,

the annotations for each instance can be represented as count vectors for each annotator, i.e., aaai j is a
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qqq

µµµk aaa jk

fff k

Yi

Mi

XXXi

AAAi j

i = 1 . . .N

k = 1 . . .K
j = 1 . . .J

j = 1 . . .J

k = 1 . . .K

k = 1 . . .K

qqq ⇠ SymDir(bq ), dim(qqq) = K
µµµk ⇠ Dir(bbbµk), dim(µµµk) = K
fff k ⇠ SymDir(bf ), dim(fff k) = F

aaa jk ⇠ Dir(bbba jk), dim(aaa jk) = K

yi|qqq ⇠Cat(qqq), yi 2 {1 . . .K}
mi|yi,µµµ ⇠Cat(µµµyi

), mi 2 {1 . . .K}
xxxi|mi,fff ⇠Multinom(|xxxi|1,fff mi

), dim(xxxi) = F
aaai j|yi,aaa j ⇠Multinom(|aaai j|1,aaa j,yi), dim(aaai j) = K

Figure 10.1: Generative Bayesian model for inferring ground truth from multiple annotators while
modeling their individual accuracies.

vector of length K that holds the counts of the number of times annotator j labeled instance i with

each distinct label (typically, the vector is all zeroes—no annotations—or all zeroes with a single

one, but the model does not explicitly disallow the case where an annotator provides more than one

annotation for the same instance).

Imagine that, in addition to the human annotations, we were to use an off-the-shelf classifier

to produce machine predictions from each of the raw (unlabeled) data instances, xxxi. We could

then treat this prediction as yet another label from an imperfect annotator. In fact, we could use

this annotation on instances for which no human annotations are available. In our model, each

mi roughly represents this notion of a features-only, machine annotation, which contrasts with the

ground truth label, yi.
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We would also like to capture the accuracy of each annotator and the machine (recall that we

essentially treat the machine as another annotator). Each of the aaa j represents the “label confusion

matrix” for the jth annotator, i.e., the probability that the jth annotator will select annotation k0 when

the true label is k. The machine’s accuracy is similarly encapsulated by µµµ .

This model can be seen as a conglomeration of ideas from previous work. First, if we

consider only the nodes M and X , then we have a class-conditional classifier (e.g., Naı̈ve Bayes);

including priors over µµµ and fff produces the Bayesian extension (c.f. Meilǎ and Heckerman [60],

Walker and Ringger [94]). This class of model, of course, is not capable of directly incorporating

multiple annotations. Item response models, such as the model proposed by Dawid and Skene

[22], do take into account the annotations A, but they do not consider the machine as an annotator;

consequently, Y is the only other random variable in their model (inference is done in a frequentist

setting where qqq and aaa are not random variables, but constants to be learned). Smyth et al. [84]

augment David and Skene’s model to incorporate the features XXX . However, they ignore M; instead,

XXX depends directly on Y . This prevents them from learning the accuracy of the model. Furthermore,

they, too, take a frequentist approach and therefore treat fff , qqq , and aaa as constants. Carpenter

[12] proposes a model that is essentially a Bayesian version of Dawid and Skene’s model [22];

Pasternack and Roth [67] also present essentially that same model. Carroll et al. [14] propose a

similar Bayesian model that accounts for the data XXX and makes the same independence assumptions

about Y and AAA. However, their model does not treat the machine as an annotator (our M) and their

model of XXX ,Y is conditional, not generative.

10.3.2 Inference

In our generative Bayesian model that includes all of the needed data and hidden variables, the

solution to the first three tasks from the introduction (i.e., ground truth, annacc, and machacc)

become simply a matter of posterior inference. To select a label for the ith instance, we simply find

the most probable label given all of the observations (across all instances), i.e., argmaxy p(Yi =

y|aaa,xxx). Similarly, the distribution over accuracies for annotator j is simply the posterior distribution
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of aaa j given the observations, i.e., p(aaa j|aaa,xxx). Although these distributions cannot be computed

analytically, approximate inference techniques such as Gibbs sampling or variational inference can

be employed to approximate the distributions.

In this work, we construct a Gibbs sampler for inference. Liu [54] provides both empirical

and theoretical evidence supporting the superiority of collapsed and block samplers to traditional

Gibbs sampler. Thus, we analytically integrate out all of the parameters of the model (qqq , µµµ , fff , aaa)

to construct a collapsed sampler and we jointly sample yi and mi. These variables, in particular,

are highly correlated and stand to benefit most from blocking. Since each sample from a block of

categorical variables requires time exponential in the number of variables (assuming the same size

domain), these pairs are the only variables we sample in blocks.

The derivation of the complete conditionals (the probability of yi and mi given all other

random variables to be sampled) is in Appendix B; here we simply present the distributions.

For notational simplicity, we define the following count variables, which are disambiguated

by the letters of their subscripts. For the purpose of the complete conditionals, each count variable

excludes the counts associated with the instance corresponding to the complete conditional (indexed

by i):

nq
k =

N

Â
i0 6=i

(yi0 = k)

nµ
kk0 =

N

Â
i0 6=i

(yi0 = k^mi0 = k0)

na
jkk0 =

N

Â
i0 6=i

a111(yi0=k)
i0 jk0

nf
k f =

N

Â
i0 6=i

x111(mi0= j)
i0 f .

That is, nq
k is the number of instances currently labeled k; nµ

kk0 is the number of instances labeled k

that have a features-based prediction (i.e., r.v. M) of k0; na
jkk0 is the number of times that annotator j
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chose annotation k0 on instances labeled k; and nf
k f is the number of times feature f occurs with

instances having a feature-based prediction of k.

Using these count variables, the complete conditionals are:

[Yi = c,Mi = d] µ (bq +nq
c )

1
’K

k0=1 G(bµ +nµ
ck0)

(bµ +nµ
cd)

1
ÂK

k0=1(bµ +nµ
ck0)

·
J

’
j=1

1
⇣

ÂK
k0=1 ba j +na

jck0

⌘(ÂK
k0=1 ai jk0)

K

’
k0=1

⇣
ba j +na

jck0

⌘(ÂK
k0=1 ai jk0)

· 1
⇣

ÂF
f=1

⇣
bf +nf

d f

⌘⌘(ÂF
f=1 xi f )

F

’
f=1

⇣
bf +nf

d f

⌘(ÂF
f=1 xi f )

(10.1)

where the notation x(n) represents the rising factorial defined as x(n)
de f
= x(x+1)(x+2) . . .(x+n�1).

10.3.3 Instance Selection

To address the problem of instance selection with multiple annotators in an annotator-initiated

environment (i.e., selection), we extend ROI-based active learning to the multi-annotator case.

Specifically, we maintain a priority queue of instances for each annotator in which the priority

is a ROI-score computed from the expected benefit and cost of employing a particular annotator

on a particular instance. Expected benefit can be approximated using samples from the posterior

obtained from Gibbs sampling. Specifically, given S samples of yi from the posterior, each sample

denoted as y(s)i , the expected benefit (denoted as function b(·)) is:

E [b(yi|x,a)]⇡
1
S

S

Â
s=1

b(y(s)i |x,a). (10.2)

In the limit as S approaches infinity, the approximation approaches the true value of the expecta-

tion [30].

This scheme allows for different combinations of annotators and instances to result in

different expected benefits and costs, as desired. Similar to our analysis of ROI in Chapter 8, this
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approach should (greedily) maximize the performance on a cost/benefit curve. We will employ our

parallel framework [35] to constantly update each annotator’s priority queue while annotators are

annotating.

10.4 Preliminary Results

In this section, we present the results from some simple experiments similar to those performed by

Sheng et al. [83]. In these experiments, we use their generalized round robin (GRR) approach. Each

round, we select an instance at random (without replacement) and then annotate the instance K

separate times. We repeat this process until all of the instances have been annotated, and then repeat.

Thus, after R rounds, each instance will have K ·R annotations. Annotators are allowed to annotate

each instance more than once (including, more than once per round, and of course, more than

once across rounds). We try values of K = 1 . . .9 corresponding to each sub-figure in Figure 10.2.

The experiments are run using a modification of the annotator-initiated environment explained in

Chapter 9. This can be seen as the multi-annotator generalization of the random baselines presented

in standard active learning. Note, however, that these results are obtained in an annotator-initiated

environment with an emphasis on transductive learning. That is, we are mainly interested in the

overall accuracy of both labeled and unlabeled data—more so than the accuracy on held-out data,

though we examine all aspects of accuracy.

These experiments simulate three annotators with accuracies 0.7, 0.8, and 0.9, with mean

annotation times of 35, 30, and 25 seconds, respectively. The dataset is a reduced sample of the 20

newsgroups data set [44] that contains 400 documents from 4 different classes. Each experiment is

averaged over ten different random runs.

While Sheng et al. [83] focus on held-out accuracy in their experiments, we are primarily

interested in total accuracy of the corpus for the purposes of corpus annotation. It is also of interest

to examine the component parts of the total accuracy: the accuracy over instances having no

annotations (‘unlabeled accuracy’) and the accuracy over instances having at least one annotation

(‘labeled accuracy’). We also track the held-out accuracy.
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Figure 10.2: Results of GRR experiments with different K. The legend is as follows: green, accuracy
of data with at least one label; purple: accuracy of data without any labels; red: combined accuracy
of labeled/unlabeled; blue: held-out accuracy
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As can be seen in Figure 10.2, labeled accuracy, and therefore overall accuracy, approaches

1.0 as the number of annotations increases. For this dataset and these annotators, accuracy ap-

proaches 1.0 more quickly with lower K, suggesting that the best strategy may be to singly label as

many instances as possible.

Unlabeled accuracy tracks held-out accuracy almost perfectly; the maximum acheivable

accuracy on this dataset with a naı̈ve Bayes model is around 60%. This is expected since GRR

draws instances at random; this may not be the case for non-random selection strategies such as the

one described in Section 10.3.3.

Finally, note that held-out accuracy may be rising slightly quicker for larger K. If the goal

is a good inductive model, it may be advantageous to annotate the same instance multiple times

before moving on to the next (e.g., adjudicated annotation).

10.5 Conclusions and Future Work

To begin this chapter, we identified four important tasks inherent with active learning with multiple,

noisy annotators. We then presented a single, unified Bayesian model that is capable of inferring

ground truth from multiple annotations, inferring each annotator’s accuracy, and predicting its

own accuracy on unlabeled instances (the first three tasks). In addition, we have shown how the

model can be used as a benefit estimator in ROI-based active learning. The result is a model that is

potentially capable of reducing annotation costs in the presence of multiple noisy annotators.

While this chapter has presented the detailed design of this Bayesian model and its use

in active learning, experimentation will be necessary in future work to validate these approaches.

The first step in validating the approach should involve comparing the ability of the model to infer

ground truth. This can be done using GRR (mentioned in the previous section) to produce learning

curves that measure the accuracy of the inferred annotations. A similar curve can be produced using

a simple majority vote scheme for comparison. Additionally, a comparison can be made to the most

prevalent method in actual annotation projects: adjudicated annotation, in which each annotation is
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independently annotated by two annotators, and in case of disagreement an adjudicator makes the

final decision.

In conjunction with the previous experiments, the quality of the model’s estimate can also

be quantified by comparing the model’s estimate to the parameter used to generate the dataset

and computing the root mean-squared error across all annotators. As a reasonable baseline for

comparison, one might first inferring ground truth and then computing the percentage of times that

each annotator agreed with the ground truth. Similarly, the accuracy of the model’s estimate of

held-out accuracy can be compared to that of the actual accuracy.

The proposed method for selecting instances using the Bayesian model can be validated

by comparing cost/benefit curves using this approach to some baselines. One baseline is the

aforementioned GRR [83]. Higher bars for comparison are the label uncertainty (LU), model

uncertainty (MU), and combined label and model uncertainty (LMU) approaches of Sheng et al.

[83]. LU is not as easily computed in the multi-class case as it is for binary classification; however,

Monte Carlo sampling can be used to estimate the same quantity. For MU, we use an ensemble of

Naı̈ve Bayes classifiers (c.f. Roy and McCallum [75]) rather than a random forest.

The problem of inferring ground truth from noisy labels has been receiving increased

attention recently. Although most of the models are essentially extensions and variations on the

item-response model (as is ours), many of these extensions could be incorporated into our model,

for instance, item difficulty, which serves to create some correlation between annotators [12, 40,

53, 72, 95, 96]. Also, related work in the field of fact-finding deals with truthfulness and bias

of information [66], which could not only provide useful statistics about annotators and their

annotations, but also improve instance selection.
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Chapter 11

Conclusions and Future Work

Annotation projects such as the one that the Maxwell Institute is undertaking for the

Syriac project (see Chapter 1) are being initiated at an unprecedented rate, presumably due to

the corresponding technological explosion which has provided the tools, hardware, bandwidth,

and storage needed by these products at (large) scale. Yet the number of projects is not the only

thing growing rapidly. In the age of “big data,” raw corpora are so immense that complete manual

annotation is simply impossible. However, a feasible portion of a corpus may be manually annotated

and the rest of the corpus automatically annotated using machine learning methods trained on the

hand annotated data. Although the labor to undertake such projects can be costly, the majority

of annotation projects decide not to use active learning as a cost-saving approach (see Tomanek

and Olsson [90]). The biggest reason for their aversion to active learning is a lack of confidence

in the technique for reducing annotation costs in practice. This dissertation has begun to address

these concerns by developing new methods for active learning that reduce annotation costs in more

realistic environments.

One mismatch between research and practice is historical in nature. Active learning was

initially proposed as a learning protocol, i.e., as a means of training a model (it was inductive, in the

terminology of Chapter 2) using fewer instances. With the increase in costly annotation projects,

active learning came to be seen as a potential means of producing annotated corpora at lower overall

cost. Chapter 4 is the first to explicitly propose the use of transductive active learning for annotation

purposes: active learning is used to obtain a high quality model at lower cost (as in previous work),

which is subsequently used to annotate the remainder of the corpus. On the surface, this suggestion
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appears to be minor and almost obvious. However, this simple suggestion allows corpus creators to

annotate even more data than their budget allows, carefully balancing the need for more data with

the need for higher quality annotations. It also suggests that the best way to evaluate transductive

active learning is to measure the overall accuracy of a corpus (both labeled and unlabeled data).

This metric is part of the design presented in Chapter 10.

Frequently, fewer instances were implicitly equated with lower cost. Clearly, this is not so,

at least for structured learning problems as Chapter 6 clearly demonstrates: a technique may pick a

small number of information-rich instances that are very expensive to annotate (see Figure 6.1). In

order to perform more realistic simulations, it is necessary to have a realistic model of cost that can

be used to evaluate the cost of annotating each instance. Chapter 5 creates one such model from

data obtained from a user study.

In addition, cost-conscious algorithms such as ROI require an explicit model of cost. Thus,

our model of cost was used to select instances using cost-conscious algorithms. In Chapter 7, we

used the coefficients that were inferred from the user study in Chapter 5. In other words, we treated

cost as if it were fixed and known. As Settles et al. [81] point out, such costs are not realistically

known a priori. Thus, in Chapters 8 and 10, we learn the coefficients to the model during the active

learning process, following Settles et al. [81].

An important, though not particularly surprising finding from Chapter 6 is that cost-conscious

algorithms outperform non-cost-conscious algorithms. Nevertheless, even non-cost-conscious

algorithms often out-performed the random baseline and reduced the cost of annotation. This

reduction is due to the fact that non-cost-conscious algorithms have an implicit cost bias. The

advantage of algorithms that explicitly model cost is that they should continue to work successfully

even when the cost changes—so long as the new cost is correctly modeled. This flexibility is an

important step towards producing credible results for practitioners.

However, explicitly modeling cost necessarily couples the results of a method to a particular

cost measure, effectively invalidating the results for tasks for which the cost model does not apply.

This limitation essentially renders the results useless in practice. Furthermore, active learning has
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traditionally been based on more generally applicable principles that transcend a given problem,

model, or dataset. For instance, in transductive active learning where the machine is used to label

instances that were not labeled by annotators, such automatically produced labels are most likely to

be wrong for instances whose label is least certain, lending credence to the query-by-uncertainty

benefit estimator. Note that this principle is true irrespective of project, data set, output space, etc.

Chapters 7 & 8 reconcile this conflict between the imperative need for evaluating active

learning using a realistic cost and results that are generally applicable. The solution is simple,

yet effective: simply provide an estimate of benefit (e.g., based on the uncertainty principle

mentioned earlier) and divide by an estimate of cost. Simple as it may be, Chapter 8 provides

some theoretical motivation for return-on-investment-based active learning. Essentially, assuming

reasonably accurate estimators of benefit and cost, instances with the highest return-on-investment—

or, colloquially, “bang-per-buck”—will greedily produce results that tend to maximize benefit for a

given cost. We show this approach to be successful in practical settings, and the theory gives some

assurances as to the applicability more generally.

Another contribution of this dissertation has been the recognition of annotator-initiated

active learning, in which the annotator requests work from the computer “on demand,” as opposed to

learner-initiated active learning, wherein the computer sends work to the annotators at its leisure. To

the best of our knowledge, annotator-initiated annotation is nearly ubiquitous in current annotation

practice. Yet all previous research of which we are aware can be seen as learner-initiated.

While one approach is not necessarily better than the other, research up until this point has

ignored the costs associated with the learner-initiated approach, e.g., the opportunity cost related

to the time spent waiting for an annotator to begin work or the cost of paying an annotator to wait

for the next instance. Chapter 9 empirically demonstrates the danger of ignoring the costs of an

otherwise successful learner-initiated approach (like those seen in research): once accounted for, the

result can be worse than not using active learning. This pitfall is another example of where research

has ignored a cost, contributing to the mistrust that practitioners have of active learning.
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Ideally, annotators will not have to wait for instances in annotator-initiated environments as

doing so increases the cost of annotation. While annotators are not always paid by the hour, having

to wait for instances directly affects the amount of work they can accomplish and therefore affects

the pay they are willing to work for. Chapter 9 presents a simple solution: rather than computing the

next best instance upon request, the computation occurs while the annotator is annotating (and, in

fact, continuously). Chapters 8 & 9 found this technique to perform well for a variety of selection

techniques. Based on intuition and our empirical observations, we hypothesize that “reasonable”

selection functions will not perform worse than random if the same function does not perform worse

than random using learner-initiated approaches. In short, the no-wait framework of Chapter 9 helps

bridge the gap between active learning in research and active learning used in practice. We strongly

recommend that it be used in all future research using active learning techniques.

Most annotation projects involve multiple annotators. The solution we detail in Chapter 10

combines ideas from previous work in the space into a single, simple Bayesian model. In essence,

the model uses the output of a machine learning model as another annotator and combines the

results of all annotators (including the machine’s prediction) in order to infer a “true” annotation for

each instance, the accuracy of each annotator, and the accuracy of the predictions on the unlabeled

portion of the corpus. We also detail how to use this model for selecting instances in ROI-based

active learning. The result is a simple yet elegant solution for annotator-initiated projects with

multiple annotators.

While this work was focused on the creation of annotated corpora, the larger field of machine

learning can be seen as a consumer of such corpora. As such, this work may have implications more

generally to the field of machine learning. For example, by freeing up monetary resources, we may

expect to see a larger number of corpora produced. Similarly, by reducing the cost of producing

labeled data, it may be possible to produce datasets that were otherwise prohibitively costly.

In conclusion, the techniques described herein have been shown to work in realistic settings;

they reduce the total cost of producing annotated corpora in realistic environments. As a result of
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this dissertation, annotation projects should have growing confidence that active learning will not

only help reduce the cost of annotating its corpus, but is necessary to work at the scale they need.

11.1 Future Work

Despite the steps made in this dissertation towards bridging the gap between research and practice,

much is left to be done. Each of the individual chapters are peppered with suggestions about items

that can be done. In this section, we emphasize a few additional avenues of future research.

Since the experiments in this dissertation necessitated a cost model, which itself required a

non-trivial user study, the work herein was focused on a single task and dataset. Although there

are good reasons to believe these results will hold more generally based on related work and our

theoretical analyses, future work should demonstrate empirically that such is the case. Along the

way, new problems—and solutions—are bound to surface.

Even though the techniques explicated in this dissertation are more realistic than previous

research, they have yet to be evaluated in real time on a real project. The interactive nature of

active learning makes obtaining repeated results (required for statistical significance) prohibitively

expensive, and certainly infeasible for the number of experiments performed in this work. However,

a carefully designed comparison between a ROI-based approach in the no-wait framework compared

to random selection on an interesting task will further instill confidence in would-be adopters of

active learning for annotation.

The generic nature of ROI is simultaneously a strength and a weakness. The basic re-

quirement for ROI is that the implementer use a reasonably accurate estimator of cost and benefit.

Chapter 8 showed that the bar is somewhat low for “reasonably accurate”; nevertheless, it is entirely

possible to use a poor benefit estimator that leads to worse-than-random results. For simple (i.e.,

non-structured) tasks, a greedy-EVSI approach to benefit estimation may be feasible (e.g., Roy and

McCallum [75]). However, more research is needed in the area of structured learning where such

an approach is strictly intractable. It remains to be seen whether sampling can be done efficiently
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and effectively. Alternatively, benefit estimates may be able to be learned, much like we showed it

possible to learn cost estimates in Chapter 8.

Finally, in Chapter 10, we presented a design for active learning with multiple annotators and

suggested several methods for validating the approach that should be carried out in future work. In

addition, we hinted at the possibility of using benefit and cost functions that are annotator-dependent.

While we did use annotator-specific cost functions, our benefit function did not directly take

into account annotator-specific information (e.g., accuracy). Using a per-annotator greedy-EVSI

approach is promising, albeit expensive, but tractable—particularly if sampling is used [75].
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Appendix A

Efficient Computation of Expectations Using Latent Variable Markov Models

Abstract

Latent variable Markov models (LVMMs), which include hidden Markov models, conditional

Markov models, maximum entropy Markov models, and conditional random fields, are an important

class of models that are used for sequence modeling problems such as named-entity recognition,

segmentation, part-of-speech tagging, speech recognition, gene prediction, etc. In scenarios such as

active and semi-supervised learning, it is often necessary to compute expectations such as entropy,

utility, accuracy, etc. using these models. We show how two general classes of expectations for

LVMMs can be computed efficiently using dynamic programming, even when constraining the

expectations. When used to derive entropy for CRFs, the resulting dynamic programming algorithm

requires half as many passes as a previous solution built specifically for computing entropy.

A.1 Introduction

Latent variable Markov models (LVMMs) are graphical models in which the latent variables y

form a chain wherein each yt is directly connected only to its predecessor yt�1 (higher order

Markov models can be converted to order-1 Markov models). Examples of such models include

hidden Markov models (HMMs), conditional Markov models (such as a maximum entropy Markov

model), and linear-chain CRFs. Such models are useful for many sequence modeling problems

including named-entity recognition, segmentation, part-of-speech tagging, speech recognition, gene

prediction, etc. Typically, the distribution of interest is the conditional distribution p(y|x), where

the x are the known data, usually one data point per latent variable. The conditional distribution of
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LVMMs is in fact that of a linear-chain CRF:

p(y|x) = 1
Z(x)

T

’
t=1

yt(yt ,yt�1,x),

where the yt are potential functions, and Z(x) is the partition function (for a review of CRFs, see

Sutton and McCallum [85]). An LVMM is an HMM if yt(yt ,yt�1,x) = p(xt |yt)p(yt |yt�1), in which

case Z(x) = p(x); an LVMM is a CMM if y(yt ,yt�1,x) = p(yt |yt�1,x), in which case Z(x) = 1.

It is frequently necessary to compute expectations of functions of the latent variables y,

given the data x, i.e.:

EY|x [ f (y,x)] = Â
y

p(y|x) f (y,x).

One example of such an expectation for sequences is entropy, which is useful for computing

uncertainty in active learning [11, 80] or performing semi-supervised learning in linear-chain

CRFs [55]. Another common function that is computed in expectation is utility (such as expected

accuracy), which can be useful in active learning [36, 75].

Unfortunately, naı̈ve computation of such expectations is exponential in the length of the

sequence, in general. Previous work (see below) has shown that entropy can be computed in

time linear in the length of the sequence using dynamic programming. In this work, we more

generally show that expectations of certain classes of functions can be computed in linear time.

Specifically, we investigate the cases where the function to be expected over is either a product

or a sum of functions of each individual latent variable yt and its predecessor yt�1. To the best

of our knowledge, this work represents the first attempt at presenting an efficient algorithm for

expectations of general classes of functions for LVMMs. When our general approach is applied to

derive a dynamic programming solution to computing entropy for CRFs, the result requires half

as many passes of dynamic programming as a previously proposed solution built specifically for

computing entropy.
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A.2 Previous Work

Previous work has examined efficient methods specifically for computing entropy in LVMMs:

Hernando et al. [38] investigated the case for HMMs, Busby and Ringger [11] independently

derived the same for CMMs, and Mann and McCallum [55] present a solution for CRFs in the

context of semi-supervised learning using entropy regularization. The latter was also adapted to

allow for the entropy of a sequence, holding constant some of the latent variables. Although she

uses a different, more complex model, Hwa [43] presents an algorithm for the efficient calculation

of tree entropy using an inside-outside-like algorithm.

A.3 Forward Probability

We begin with a brief review of forward probability, which is defined for HMMs as at(yt)
de f
=

p(xh1...ti,yt). Although with different semantics, the forward variables can be defined more generally

for linear-chain CRFs as:

at(yt)
de f
= Â

yh1...t�1i

t

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

= Â
yt�1

yt(yt ,yt�1,x) · Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

= Â
yt�1

yt(yt ,yt�1,x)at�1(yt�1), (A.1)

with a base case of a1(y1) = y1(y1,y0,x1) (y0 is the initial state). This recurrence relation can

elegantly and efficiently be implemented using dynamic programming (c.f. Rabiner and Juang [68]).

Forward probability is needed to compute the normalizing constant Z(x) = ÂyT aT (yT ) in

CRFs, which, as previously noted, is p(x) in the case of HMMs. It also is needed to compute the

marginal probabilities p(yt |x).
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A.4 Product of Functions

Suppose the function f (·) to be expected over has the form

f (y,x) =
T

’
t

g(yt ,yt�1,x),

for some function g(·) (for brevity, we hereafter omit the x). The expectation is:

EY|x[ f (y)] = Â
y

p(y|x) f (y)

= Â
y

1
Z(x)

T

’
t=1

yt(yt ,yt�1,x) ·
T

’
t=1

g(yt ,yt�1)

=
1

Z(x)Â
y

T

’
t=1

yt(yt ,yt�1,x) ·g(yt ,yt�1). (A.2)

Now, let

pt(yt)
de f
= Â

yh1...t�1i

t

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)g(yt 0 ,yt 0�1). (A.3)

Comparing equations A.2 and A.3, we can see that

EY|x[ f (y)] =
1

Z(x)Â
yT

pT (yT ). (A.4)

A recurrence relation can be established from equation A.3:

pt(yt) = Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1)

· Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)g(yt 0 ,yt 0�1)

= Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1)pt�1(yt�1),
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with a base case of pt�1 = 1. From this relation, a linear-time dynamic programming solution

analogous to the forward algorithm can be used to compute the expectation. Note that the forward

algorithm is needed to compute Z(x) for final computation of equation A.4.

A.5 Sum of Functions

Suppose the function f (·) to be expected over has the form

f (y,x) = Â
t

g(yt ,yt�1,x), (A.5)

for some function g(·) (for brevity, we once again omit the x hereafter). The expectation is:

EY|x[ f (y)] = Â
y

p(y|x) f (y)

= Â
y

1
Z(x)

"
T

’
t=1

yt(yt ,yt�1,x)

#
·
"

T

Â
t=1

g(yt ,yt�1)

#
. (A.6)

Now, let

st(yt)
de f
= Â

yh1...t�1i

"
t

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

#
·
"

t

Â
t 0=1

g(yt 0 ,yt 0�1)

#
. (A.7)

From equations A.6 and A.7, it follows that EY|x[ f (y)] = 1
Z(x) ÂyT sT (yT ).

By pushing the appropriate sums inside the product and splitting the sum of functions, we

can establish the following recurrence relation:

st(yt) = Â
yt�1

"
yt(yt ,yt�1,x) · Â

yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x) ·
"

g(yt ,yt�1)+
t�1

Â
t 0=1

g(yt 0 ,yt 0�1)

##

= Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1) ·
"

Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

#

+ Â
yt�1

yt(yt ,yt�1,x)

"

Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x) ·
t�1

Â
t 0=1

g(yt 0 ,yt 0�1)

#

= Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1)at�1(yt�1)+ Â
yt�1

yt(yt ,yt�1,x)st�1(yt�1), (A.8)
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with a base case of s0(yt) = 0. This recurrence relation can be implemented using a dynamic

programming solution analogous to the forward algorithm, and require computation of the forward

variables.

A common example is entropy:

f (y) =� log p(y|x)

=� log
⇢

1
Z(x)’

t
yt(yt ,yt�1,x)

�

= logZ(x)�Â
t

logyt(yt ,yt�1,x).

Now let g(yt ,yt�1) = logyt(yt ,yt�1,x). Then due to linearity,

EY|x[ f (y)] = logZ(x)�EY|x


Â
t

g(yt ,yt�1)

�
; (A.9)

equation A.8 provides the solution to the latter expectation and yields the same recursive relation

as reported by Busby and Ringger [11]. Although the resultant relation differs from Mann and

McCallum [55] and Hernando et al. [38], they are equivalent and share similarities. For instance,

Hernando et al. [38] solution requires simultaneous computation of the forward probability and the

recursive entropy. The main conceptual difference is that their solution mathematically incorporates

logZ(x) during recursion. We note that by applying our more general solution to the specific case

of entropy, the resultant solution requires a single pass of the forward algorithm and an additional

pass for recursive entropy; this contrasts to the four passes required by the approach of Mann and

McCallum [55] which could equate to significant gains in practice for problems with a large output

space or large datasets.

A.6 Extensions and Conclusions

In this section, we consider a special case of the sum of functions as well as an extension to the

basic algorithm that can account for constraints.
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As a special case of equation A.5, consider the case when the function g(·) depends only on

the current latent variable yt (as is the case with accuracy), only the marginal p(yt |x) is necessary:

EY|x


Â
t

g(yt)

�
= Â

y
p(y|x)Â

t
g(yt)

= Â
t

Â
y

p(y|x)g(yt)

= Â
t

Â
yt

Â
y\t

p(y\t ,yt |x)g(yt)

= Â
t

Â
yt

g(yt)Â
y\t

p(y\t ,yt |x)

= Â
t

Â
yt

p(yt |x)g(yt)

The marginal probability itself can be computed using the forward and backward probabilities. In

many cases, this may be simpler to implement, if methods are already available that compute the

marginal.

Accuracy and utility are examples of this type of function. In the case of accuracy, g(yt) =

1(yt = ŷt), where ŷt is the gold standard.

Another extension is based on what Mann and McCallum [55] call subsequence constrained

entropy: some of the labels of a sequence are observed and others are not. The sum in the expectation

is only over assignments of unobserved variables and the full joint probability of all variables p(y|x)

is used. The more general expectations presented herein can also be constrained in a similar fashion;

the only change required is that for the recursive relation for the known Yt , we omit the sum over

possible assignments to that value and simply use the known value.

In conclusion, when using LVMMs, it is possible to efficiently compute expectations of two

classes of functions: products and sums of functions of the individual latent variables and their

predecessors. This generic approach is more efficient than some previously published approaches

for entropy and is easily adapted to computing expectations using subsequence constraints. Future
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work could focus on similar generalizations for expectations using trees or other structured models.
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Appendix B

Derivation of the Complete Conditionals for the Multiple Annotator Model

In this appendix, we derive the complete conditionals for the collapsed and blocked Gibbs

sampler for the model presented in Figure 10.1. For this sampler, it is necessary to derive the

complete conditional distributions of Yi and Mi (a block), given the values of all the other Y s and Ms,

denoted yyy¬i and mmm¬i, respectively (the parameters are analytically integrated out in the collapsed

model). The complete conditionals, p(yi,mi|yyy¬i,mmm¬i,aaa,xxx), are denoted in shorthand as [yi,mi].

We begin with the joint distribution over all random variables in the model:

p(qqq ,µµµ,aaa,fff ,yyy,mmm,aaa,xxx)

= p(qqq |bq )

 
K

’
k=1

p(µµµk|bbbµk)

! 
J

’
j=1

K

’
k=1

p(aaa jk|bbba jk)

! 
K

’
k=1

p(fff k|bf )

!

·
 

N

’
i=1

p(yi|qqq)p(mi|yi,µµµ)

 
J

’
j=1

p(aaai j|yi,aaa j)

!
p(xxxi|mi,fff)

!

µ

 
K

’
k=1

q bq�1
k

! 
K

’
k=1

K

’
k0=1

µbµk�1
kk0

! 
J

’
j=1

K

’
k=1

K

’
k0=1

a
ba jk�1
jkk0

! 
K

’
k=1

F

’
f=1

f bf�1
k f

!

·
 

N

’
i=1

qyi µyimi

 
J

’
j=1

|aaai j|1!
’K

k=1 ai jk!

K

’
k=1

aai jk
jyik

! 
|xxxi|1!

’F
f=1 xi f !

F

’
f=1

f xi f
mi f

!!

where | · |1 denotes the L1-norm. Also note that the normalizing constants for the Dirichlet distribu-

tions have been absorbed into the constant of proportionality.
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For notational brevity, we define the following count variables, which are disambiguated by

their superscripts ( is an indicator function)

nq
k =

N

Â
i

(yi = k)

nµ
kk0 =

N

Â
i

(yi = k^mi = k0)

na
jkk0 =

N

Â
i

a111(yi=k)
i jk0

nf
k f =

N

Â
i

x111(mi= j)
i f .

That is, nq
k is the number of instances currently labeled k; nµ

kk0 is the number of instances labeled k

that have a features-based prediction (i.e., r.v. M) of k0; na
jkk0 is the number of times that annotator j

chose annotation k0 on instances labeled k; and nf
k f is the number of times feature f occurs with

instances having a feature-based prediction of k.
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Next, we apply the commutative property of multiplication and combine like terms:

p(qqq ,µµµ,aaa,fff ,yyy,mmm,aaa,xxx) µ
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k=1
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Since we are interested in a fully collapsed sampler wherein all of the parameters are

integrated out:
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The last step follows from the definition of the pdf of a Dirichlet distribution, in particular, the

values of the integrals in the equation are the normalizing constant of the Dirichlet distribution.

We define a block sampler in which yi and mi are sampled jointly. First, we note that the

multinomial coefficients are constant within the complete conditionals, since aaa and xxx are given.

Next, let yyy¬i = {y j| j 6= i}; mmm¬i is similarly defined. Please note that in the following equations,

we have redefined the count variables defined previously (i.e., nq
k ,n

µ
kk0 ,n

a
jkk0 ,n

f
k f ) to exclude counts

from the current instance (i), i.e., they are sums over yyy¬i and mmm¬i; we then manually add in the
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appropriate counts from the current instance.
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To simplify, we eliminate the products whose index involves the exclusion of c or d. To do

so, we simply multiply by unity, e.g.,

g(c)’
k 6=c

f (k) = g(c)
f (c)
f (c) ’

k 6=c
f (k)

= g(c)
1

f (c)’
k

f (k)

µ g(c)
f (c)

.

Noting that the sum in the denominator of the first term of equation B.1 is constant (Âk 6=c nq
k +nc+1

is equal to the number of instances) and can be dropped, the result of applying the aforementioned
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simplification is:
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Let x(n)
de f
= x(x+ 1) . . .(x+ n� 1) be the rising factorial. Note that G(x+n)

G(x) = x(n). After

re-ordering the numerators and denominators to identify rising factorials and noting that x(1) = x,

we are left with:
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These are the complete conditionals as presented in equation 10.1.
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